Show simple item record

Time‐varying effect moderation using the structural nested mean model: estimation using inverse‐weighted regression with residuals

dc.contributor.authorAlmirall, Danielen_US
dc.contributor.authorGriffin, Beth Annen_US
dc.contributor.authorMcCaffrey, Daniel F.en_US
dc.contributor.authorRamchand, Rajeeven_US
dc.contributor.authorYuen, Robert A.en_US
dc.contributor.authorMurphy, Susan A.en_US
dc.date.accessioned2014-08-06T16:49:44Z
dc.date.availableWITHHELD_14_MONTHSen_US
dc.date.available2014-08-06T16:49:44Z
dc.date.issued2014-09-10en_US
dc.identifier.citationAlmirall, Daniel; Griffin, Beth Ann; McCaffrey, Daniel F.; Ramchand, Rajeev; Yuen, Robert A.; Murphy, Susan A. (2014). "Time‐varying effect moderation using the structural nested mean model: estimation using inverse‐weighted regression with residuals." Statistics in Medicine 33(20): 3466-3487.en_US
dc.identifier.issn0277-6715en_US
dc.identifier.issn1097-0258en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108035
dc.publisherSage Publicationsen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherTime‐Varying Confoundingen_US
dc.subject.otherInverse‐Probability‐Of‐Treatment Weightingen_US
dc.subject.otherEffect Modificationen_US
dc.subject.otherTime‐Varying Covariatesen_US
dc.subject.otherTime‐Varying Treatmenten_US
dc.subject.otherTime‐Varying Exposureen_US
dc.titleTime‐varying effect moderation using the structural nested mean model: estimation using inverse‐weighted regression with residualsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMedicine (General)en_US
dc.subject.hlbsecondlevelStatistics and Numeric Dataen_US
dc.subject.hlbsecondlevelPublic Healthen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelSocial Sciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108035/1/sim5892.pdf
dc.identifier.doi10.1002/sim.5892en_US
dc.identifier.sourceStatistics in Medicineen_US
dc.identifier.citedreferenceRosthøj S, Keiding N, Schmiegelow K. Estimation of dynamic treatment strategies for maintenance therapy of children with acute lymphoblastic leukaemia: an application of history‐adjusted marginal structural models. Statistics in Medicine 2009; 31 ( 5 ): 470 – 488.en_US
dc.identifier.citedreferenceSchafer J. Analysis of Incomplete Multivariate Data. Chapman and Hall / CRC Press: London, 1997.en_US
dc.identifier.citedreferenceHenderson R, Ansell P, Alshibani D. Regret‐regression for optimal dynamic treatment regimes. Biometrics 2010; 66 ( 4 ): 1192 – 201.en_US
dc.identifier.citedreferenceHenderson R, Ansell P, Alshibani D. Optimal dynamic treatment methods. REVSTAT Statistical Journal 2011; 9 ( 1 ): 19 – 36.en_US
dc.identifier.citedreferencevan der Laan MJ, Murphy SA, Robins JM. Analyzing dynamic regimes using structural nested mean models, 2002. Unpublished Manuscript.en_US
dc.identifier.citedreferencevan der Laan MJ, Robins JM. Unified Methods for Censored Longitudinal Data and Causality, Series in Statistics. Springer‐Verlag: New York, NY, 2003.en_US
dc.identifier.citedreferenceRobins JM. Optimal structural nested models for optimal sequential decisions. In Proceedings of the Second Seattle Symposium on Biostatistics, Lin D, Heagerty P (eds). Springer: New York, NY, 2004; 189 – 326.en_US
dc.identifier.citedreferenceRubin DB. Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology 1974; 66 ( 5 ): 688 – 701.en_US
dc.identifier.citedreferenceHolland P. Statistics and causal inference. Journal of the American Statistical Association 1986; 81: 945 – 970.en_US
dc.identifier.citedreferenceVanderWeele TJ. Mediation and mechanism. European Journal of Epidemiology 2009; 24 ( 5 ): 217 – 224.en_US
dc.identifier.citedreferenceVanderWeele TJ, Vansteelandt S. Conceptual issues concerning mediation, interventions and composition. Statistics and Its Interface 2009; 2: 457 – 468.en_US
dc.identifier.citedreferenceMcCullagh P, Nelder J. Generalized Linear Models, 2nd edn. Chapman and Hall/CRC: Boca Raton, FL, 1989.en_US
dc.identifier.citedreferenceRubin D. Multiple Imputation for Nonresponse in Surveys. Wiley: New York, NY, 1987.en_US
dc.identifier.citedreferenceCohen J. Statistical Power Analysis for the Behavioral Sciences, 2nd edn. Lawrence Earlbaum Associates: Hillsdale, New Jersey, 1988.en_US
dc.identifier.citedreferenceDennis ML, Titus JC, White MK, Unsicker JI, Hodgkins D. Global Appraisal of Individual Needs (GAIN): Administration guide for the GAIN and related measures, Chestnut Health Systems, Bloomington, IL: Chestnut Health Systems, 2002. Available online at http://www.chestnut.org/li/gain.en_US
dc.identifier.citedreferenceAlmirall D, McCaffrey DF, Griffin BA, Ramchand R, Yuen RA, Murphy SA. Examining moderated effects of additional adolescent substance use treatment: Structural nested mean model estimation using inverse‐weighted regression with residuals. Technical Report 12‐121, Penn State University, University Park, PA, 2012.en_US
dc.identifier.citedreferenceRaghunathan T, Lepkowski J, Hoewyk J, Solenberger P. A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology 2001; 27: 85 – 95.en_US
dc.identifier.citedreferenceRaghunathan T, Solenberger P, Hoewyk J. IVEware: Imputation and variance estimation software, Survey Research Center, Institute for Social Research, Ann Arbor, MI, 2002.en_US
dc.identifier.citedreferenceMcCaffrey DF, Ridgeway G, Morral AR. Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychological Methods 2004; 9 ( 4 ): 403 – 425.en_US
dc.identifier.citedreferenceDishion T, McCord J, Poulin F. When interventions harm: peer groups and problem behavior. American Psychologist 1999; 54 ( 9 ): 755 – 764.en_US
dc.identifier.citedreferenceGarnick D, Lee M, O'Brien P, Panas L, Ritter G, Acevedo A, Garner B, Funk R, Godley M. The washington circle engagement performance measures’ association with adolescent treatment outcomes. Drug and Alcohol Dependence 2012; 124 ( 3 ): 250 – 258.en_US
dc.identifier.citedreferenceWilliams R, Chang S. A comprehensive and comparative review of adolescent substance treatment outcome. Clinical Psychology: Science and Practice 2000; 7 ( 2 ): 138 – 166.en_US
dc.identifier.citedreferenceRothman K, Greenland S. Modern Epidemiology, 2nd edn. Lippincott‐Raven: Philadelphia, PA, 1998.en_US
dc.identifier.citedreferenceBrumback B, Berg A. On effect‐measure modification: relationships among changes in the relative risk, odds ratio, and risk difference. Statistics in Medicine 2008; 27: 3453 – 3465.en_US
dc.identifier.citedreferenceVansteelandt S, Goetghebeur E. Causal inference with generalized structural mean models. Journal of the Royal Statistical Society Series B 2003; 65: 817 – 835.en_US
dc.identifier.citedreferenceRobins JM, Rotnitzky A. Estimation of treatment effects in randomised trials with non‐compliance and a dichotomous outcome using structural mean models. Biometrika 2004; 91: 763 – 783.en_US
dc.identifier.citedreferenceComté L, Vansteelandt S, Tousset E, Baxter G, Vrijens B. Linear and loglinear structural mean models to evaluate the benefits of an on‐demand dosing regimen. Clinical Trials 2009; 6: 403 – 415.en_US
dc.identifier.citedreferenceMurphy SA. Optimal dynamic treatment regimes. Journal of the Royal Statistical Society, Series B 2003; 65 ( 2 ): 331 – 366.en_US
dc.identifier.citedreferenceHernán MA, Lanoy E, Costagliola D, Robins JM. Comparison of dynamic treatment regimes via inverse probability weighting. Basic and Clinical Pharmacology and Toxicology 2006; 98 ( 3 ): 237 – 242.en_US
dc.identifier.citedreferenceMoodie E, Richardson T, Stephens D. Demystifying optimal dynamic treatment regimes. Biometrics 2007; 63 ( 2 ): 447 – 455.en_US
dc.identifier.citedreferenceOrellana L, Rotnitzky A, Robins JM. Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, part I: main content. International Journal of Biostatistics 2010; 6 ( 2 ). Article 8.en_US
dc.identifier.citedreferenceKraemer HC, Wilson G, Fairburn C. Mediators and moderators of treatment effects in randomized clinical trials. Archives of General Psychiatry 2002; 59: 877 – 883.en_US
dc.identifier.citedreferenceAlmirall D, McCaffrey D, Ramchand R, Murphy S. Subgroups analysis when treatment and moderators are time‐varying. Prevention Science 2011; 14 ( 2 ): 169 – 178.en_US
dc.identifier.citedreferenceAlmirall D, Ten Have T, Murphy S. Structural nested mean models for assessing time‐varying effect moderation. Biometrics 2009; 66 ( 1 ): 131 – 139.en_US
dc.identifier.citedreferencePetersen M, Deeks S, Martin J, van der Laan M. History‐adjusted marginal structural models to estimate time‐varying effect modification. American Journal of Epidemiology 2007; 166 ( 9 ): 985 – 93.en_US
dc.identifier.citedreferenceRobins JM, Hernán MA, Rotnitzky A. Invited commentary on ‘history‐adjusted marginal structural models to estimate time‐varying effect modification’. American Journal of Epidemiology 2007; 166 ( 9 ): 994 – 1002.en_US
dc.identifier.citedreferencePetersen M, van der Laan M. Response to invited commentary on ‘history‐adjusted marginal structural models to estimate time‐varying effect modification’. American Journal of Epidemiology 2007; 166 ( 9 ): 1003 – 1004.en_US
dc.identifier.citedreferenceMurphy SA, van der Laan MJ, Robins JM, CPPRG. Marginal mean models for dynamic regimes. Journal of the American Statistical Association 2001; 96: 1410 – 1423.en_US
dc.identifier.citedreferenceMurphy S, Almirall D. Dynamic treatment regimens. In Encyclopedia of Medical Decision Making, Kattan MW (ed.). Sage Publications: Thousand Oaks, CA, 2009; 419 – 422.en_US
dc.identifier.citedreferenceBaron R, Kenny D. The moderator‐mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology 1986; 51: 1173 – 1182.en_US
dc.identifier.citedreferenceRobins JM. Causal inference from complex longitudinal data. In Latent Variable Modeling and Applications to Causality, Lecture Notes in Statistics. Springer‐Verlag: New York, 1997; 69 – 117.en_US
dc.identifier.citedreferenceRobins JM. Association, causation, and marginal structural models. Synthese 1999; 121: 151 – 179.en_US
dc.identifier.citedreferenceRobins JM, Hernan MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology 2000; 11 ( 5 ): 550 – 560.en_US
dc.identifier.citedreferenceHernán MA, Brumback B, Robins JM. Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV‐positive men. Epidemiology 2000; 11 ( 5 ): 561 – 570.en_US
dc.identifier.citedreferenceCole SR, Hernán MA, Robins JM, Anastos K, Chmiel J, Detels R, Ervin C, Feldman J, Greenblatt R, Kingsley L, Lai S, Young M, Cohen M, Muñoz A. Effect of highly active antiretroviral therapy on time to acquired immunodeficiency syndrome or death using marginal structural models. American Journal of Epidemiology 2003; 158 ( 7 ): 687 – 694.en_US
dc.identifier.citedreferenceRobins JM. A graphical approach to the identification and estimation of causal parameters in mortality studies with sustained exposure periods. Journal of Chronic Disease 1987; 40 ( Supplement 2 ): 139s – 161s.en_US
dc.identifier.citedreferenceRobins JM. The control of confounding by intermediate variables. Statistics in Medicine 1989; 8: 679 – 701.en_US
dc.identifier.citedreferenceRobins JM. Correcting for non‐compliance in randomized trials using structural nested mean models. Communications in Statistics, Theory and Methods 1994; 23: 2379 – 2412.en_US
dc.identifier.citedreferenceRobins JM. Estimating causal effects of time‐varying endogenous treatments by g‐estimation of structural nested models. In Latent Variable Modeling and Applications to Causality, Berkane M (ed.), Lecture Notes in Statistics. Springer: New York, 1997; 69 – 117.en_US
dc.identifier.citedreferencePearl J. Graphs, causality, and structural equation models. Sociological Methods and Research 1998; 27: 226 – 284.en_US
dc.identifier.citedreferenceCole S, Platt R, Schisterman E, Chu H, Westreich D, Richardson D, Poole C. Illustrating bias due to conditioning on a collider. International Journal of Epidemiology 2010; 39: 417 – 420.en_US
dc.identifier.citedreferenceMurphy S. An experimental design for the development of adaptive treatment strategies. Statistics in Medicine 2005; 24 ( 10 ): 1455 – 1481.en_US
dc.identifier.citedreferenceAlmirall D, Coffman C, Yancy W, Murphy S. Maximum likelihood estimation of the structural nested mean model using SAS PROC NLP. In Analysis of Observational Health‐Care Data Using SAS, Faries D, Leon A, Haro J, Obenchain B (eds). SAS Press: Cary, NC, 2010; 231 – 261.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.