Show simple item record

Reconciling modeled and observed atmospheric deposition of soluble organic nitrogen at coastal locations

dc.contributor.authorIto, Akinorien_US
dc.contributor.authorLin, Guangxingen_US
dc.contributor.authorPenner, Joyce E.en_US
dc.date.accessioned2014-08-06T16:49:45Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2014-08-06T16:49:45Z
dc.date.issued2014-06en_US
dc.identifier.citationIto, Akinori; Lin, Guangxing; Penner, Joyce E. (2014). "Reconciling modeled and observed atmospheric deposition of soluble organic nitrogen at coastal locations." Global Biogeochemical Cycles 28(6): 617-630.en_US
dc.identifier.issn0886-6236en_US
dc.identifier.issn1944-9224en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108038
dc.description.abstractAtmospheric deposition of reactive nitrogen (N) species from air pollutants is a significant source of exogenous nitrogen in marine ecosystems. Here we use an atmospheric chemical transport model to investigate the supply of soluble organic nitrogen (ON) from anthropogenic sources to the ocean. Comparisons of modeled deposition with observations at coastal and marine locations show good overall agreement for inorganic nitrogen and total soluble nitrogen. However, previous modeling approaches result in significant underestimates of the soluble ON deposition if the model only includes the primary soluble ON and the secondary oxidized ON in gases and aerosols. Our model results suggest that including the secondary reduced ON in aerosols as a source of soluble ON contributes to an improved prediction of the deposition rates (g N m −2  yr −1 ). The model results show a clear distinction in the vertical distribution of soluble ON in aerosols between different processes from the primary sources and the secondary formation. The model results (excluding the biomass burning and natural emission changes) suggest an increase in soluble ON outflow from atmospheric pollution, in particular from East Asia, to the oceans in the twentieth century. These results highlight the necessity of improving the process‐based quantitative understanding of the chemical reactions of inorganic nitrogen species with organics in aerosol and cloud water. Key Points Soluble secondary reduced ON improves model‐observation comparison Vertical profile of soluble ON differs between different formation processes Human activities increase terrestrial soluble ON input to the oceansen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherOrganic Nitrogenen_US
dc.subject.otherOxidized Nitrogenen_US
dc.subject.otherReduced Nitrogenen_US
dc.subject.otherEnvironmental Changesen_US
dc.subject.otherAtmospheric Depositionen_US
dc.titleReconciling modeled and observed atmospheric deposition of soluble organic nitrogen at coastal locationsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108038/1/TableS2.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108038/2/TableS1.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108038/3/GBC_02042013readme.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108038/4/gbc20169.pdf
dc.identifier.doi10.1002/2013GB004721en_US
dc.identifier.sourceGlobal Biogeochemical Cyclesen_US
dc.identifier.citedreferenceNeff, J. C., E. A. Holland, F. J. Dentener, W. H. McDowell, and K. M. Russell ( 2002 ), The origin, composition and rates of organic nitrogen deposition: A missing piece of the nitrogen cycle?, Biogeochemistry, 57, 99 – 136.en_US
dc.identifier.citedreferenceRotman, D. A., et al. ( 2004 ), IMPACT, the LLNL 3‐D global atmospheric chemical transport model for the combined troposphere and stratosphere: Model description and analysis of ozone and other trace gases, J. Geophys. Res., 109, D04303, doi: 10.1029/2002JD003155.en_US
dc.identifier.citedreferenceRussell, K. M., J. N. Galloway, S. A. Macko, J. L. Moody, and J. R. Scudlark ( 1998 ), Sources of nitrogen in wet deposition to the Chesapeake Bay region, Atmos. Environ., 32 ( 14–15 ), 2453 – 2465, doi: 10.1016/S1352‐2310(98)00044‐2.en_US
dc.identifier.citedreferenceScudlark, J. R., K. M. Russell, J. N. Galloway, T. M. Church, and W. C. Keene ( 1998 ), Organic nitrogen in precipitation at the mid‐Atlantic U.S. Coast—Methods evaluation and preliminary measurements, Atmos. Environ., 32 ( 10 ), 1719 – 1728, doi: 10.1016/S1352‐2310(97)00458‐5.en_US
dc.identifier.citedreferenceSedehi, N., H. Takano, V. A. Blasic, K. A. Sullivan, and D. O. De Haan ( 2013 ), Temperature‐ and pH‐dependent aqueous‐phase kinetics of the reactions of glyoxal and methylglyoxal with atmospheric amines and ammonium sulfate, Atmos. Environ., 77, 656 – 663.en_US
dc.identifier.citedreferenceSeitzinger, S. P., R. M. Styles, R. Lauck, and M. A. Mazurek ( 2003 ), Atmospheric pressure mass spectrometry: A new analytical chemical characterization method for dissolved organic matter in rainwater, Environ. Sci. Technol., 37 ( 1 ), 131 – 137, doi: 10.1021/es025848x.en_US
dc.identifier.citedreferenceShapiro, E. L., J. Szprengiel, N. Sareen, C. N. Jen, M. R. Giordano, and V. F. McNeill ( 2009 ), Light‐absorbing secondary organic material formed by glyoxal in aqueous aerosol mimics, Atmos. Chem. Phys., 9, 2289 – 2300, doi: 10.5194/acp‐9‐2289‐2009.en_US
dc.identifier.citedreferenceSpokes, L. J., S. G. Yeatman, S. E. Cornell, and T. D. Jickells ( 2000 ), Nitrogen deposition to the easterly Atlantic Ocean: The importance of south‐easterly flow, Tellus Ser. B, 52, 37 – 49.en_US
dc.identifier.citedreferenceSundarambal, P., R. Balasubramanian, P. Tkalich, and J. He ( 2010 ), Impact of biomass burning on ocean water quality in Southeast Asia through atmospheric deposition: Field observations, Atmos. Chem. Phys., 10, 11,323 – 11,326, doi: 10.5194/acp‐10‐11323‐2010.en_US
dc.identifier.citedreferenceVignati, E., M. C. Facchini, M. Rinaldi, C. Scannell, D. Ceburnis, J. Sciare, M. Kanakidou, S. Myriokefalitakis, F. Dentener, and C. D. O'Dowd ( 2010 ), Global scale emission and distribution of sea‐spray aerosol: Sea‐salt and organic enrichment, Atmos. Environ., 44 ( 5 ), 670 – 677.en_US
dc.identifier.citedreferenceViolaki, K., P. Zarbas, and N. Mihalopoulos ( 2010 ), Long‐term measurements of dissolved organic nitrogen (DON) in atmospheric deposition in the Eastern Mediterranean: Fluxes, origin and biogeochemical implications, Mar. Chem., 120 ( 1–4 ), 179 – 186, doi: 10.1016/j.marchem.2009.08.004.en_US
dc.identifier.citedreferenceWang, J., A. A. Hoffmann, R. J. Park, D. J. Jacob, and S. T. Martin ( 2008 ), Global distribution of solid and aqueous sulfate aerosols: Effect of the hysteresis of particle phase transitions, J. Geophys. Res., 113, D11206, doi: 10.1029/2007JD009367.en_US
dc.identifier.citedreferenceWang, X., S. Gao, X. Yang, H. Chen, J. Chen, G. Zhuang, J. D. Surratt, M. N. Chan, and J. H. Seinfeld ( 2010 ), Evidence for high molecular weight nitrogencontaining organic salts in urban aerosols, Environ. Sci. Technol., 44, 4441 – 4446, doi: 10.1021/es1001117.en_US
dc.identifier.citedreferenceWang, Y., D. J. Jacob, and J. A. Logan ( 1998 ), Global simulation of tropospheric O 3 ‐NO x ‐hydrocarbon chemistry: 1. Model formulation, J. Geophys. Res., 103, 10,713 – 10,725, doi: 10.1029/98JD00158.en_US
dc.identifier.citedreferenceWaxman, E. M., K. Dzepina, B. Ervens, J. Lee‐Taylor, B. Aumont, J.‐L. Jimenez, S. Madronich, and R. Volkamer ( 2013 ), Secondary organic aerosol formation from semi‐ and intermediate‐volatility organic compounds and glyoxal: Relevance of O/C as a tracer for aqueous multiphase chemistry, Geophys. Res. Lett., 40, 978 – 982, doi: 10.1002/grl.50203.en_US
dc.identifier.citedreferenceWesely, M. L. ( 1989 ), Improved parameterizations for surface resistance to gaseous dry deposition in regional‐scale numerical models, Atmos. Environ., 23, 1293 – 1304.en_US
dc.identifier.citedreferenceXu, L., and J. E. Penner ( 2012 ), Global simulations of nitrate and ammonium aerosols and their radiative effects, Atmos. Chem. Phys., 12, 9479 – 9504, doi: 10.5194/acp‐12‐9479‐2012.en_US
dc.identifier.citedreferenceYan, X., Akimoto, H., and Ohara, T. ( 2005 ), Statistical modeling of NO x emission from global soils, Global Biogeochem. Cycles, 19, GB3019, doi: 10.1029/2004GB002276.en_US
dc.identifier.citedreferenceZamora, L. M., J. M. Prospero, and D. A. Hansell ( 2011 ), Organic nitrogen in aerosols and precipitation at Barbados and Miami: Implications regarding sources, transport and deposition to the western subtropical North Atlantic, J. Geophys. Res., 116, D20309, doi: 10.1029/2011JD015660.en_US
dc.identifier.citedreferenceZhang, L., S. L. Gong, J. Padro, and L. Barrie ( 2001 ), A size‐segregated particle dry deposition scheme for an atmospheric aerosol module, Atmos. Environ., 35 ( 3 ), 549 – 560.en_US
dc.identifier.citedreferenceZhang, Y., L. Zheng, X. Liu, T. Jickells, J. Neil Cape, K. Goulding, A. Fangmeier, and F. Zhang ( 2008 ), Evidence for organic N deposition and its anthropogenic sources in China, Atmos. Environ., 42 ( 5 ), 1035 – 1041, doi: 10.1016/j.atmosenv.2007.12.015.en_US
dc.identifier.citedreferenceZhou, C., J. E. Penner, M. G. Flanner, M. M. Bisiaux, R. Edwards, and J. R. McConnell ( 2012 ), Transport of black carbon to polar regions: Sensitivity and forcing by black carbon, Geophys. Res. Lett., 39, L22804, doi: 10.1029/2012GL053388.en_US
dc.identifier.citedreferenceAllen, D. J., and K. E. Pickering ( 2002 ), Evaluation of lightning flash rate parameterizations for use in a global chemical transport model, J. Geophys. Res., 107 ( D23 ), 4711, doi: 10.1029/2002JD002066.en_US
dc.identifier.citedreferenceAltieri, K. E., B. J. Turpin, and S. P. Seitzinger ( 2009 ), Composition of dissolved organic nitrogen in continental precipitation investigated by ultra‐high resolution FT‐ICR mass spectrometry, Environ. Sci. Technol., 43, 6950 – 6955, doi: 10.1021/es9007849.en_US
dc.identifier.citedreferenceAltieri, K. E., M. G. Hastings, A. J. Peters, and D. M. Sigman ( 2012 ), Molecular characterization of water soluble organic nitrogen in marine rainwater by ultra‐high resolution electrospray ionization mass spectrometry, Atmos. Chem. Phys., 12, 3557 – 3571, doi: 10.5194/acp‐12‐3557‐2012.en_US
dc.identifier.citedreferenceArrigo, K. R. ( 2005 ), Marine microorganisms and global nutrient cycles, Nature, 437, 349 – 355, doi: 10.1038/nature04159.en_US
dc.identifier.citedreferenceAtherton, C. S., and J. E. Penner ( 1990 ), The effects of biogenic hydrocarbons on the transformation of nitrogen oxides in the troposphere, J. Geophys. Res., 95, 14,027 – 14,038, doi: 10.1029/JD095iD09p14027.en_US
dc.identifier.citedreferenceBates, T. S., et al. ( 2012 ), Measurements of ocean derived aerosol off the coast of California, J. Geophys. Res., 117, D00V15, doi: 10.1029/2012JD017588.en_US
dc.identifier.citedreferenceBellouin, N., J. Rae, A. Jones, C. Johnson, J. Haywood, and O. Boucher ( 2011 ), Aerosol forcing in the Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2‐ES and the role of ammonium nitrate, J. Geophys. Res., 116, D20206, doi: 10.1029/2011JD016074.en_US
dc.identifier.citedreferenceBencs, L., A. Krata, B. Horemans, A. J. Buczyfiska, A. C. Dirtu, A. F. J. Godoi, R. H. M. Godoi, S. Potgieter‐Vermaak, and R. Van Grieken ( 2009 ), Atmospheric nitrogen fluxes at the Belgian coast: 2004–2006, Atmos. Environ., 43, 3786 – 3798, doi: 10.1016/j.atmosenv.2009.04.002.en_US
dc.identifier.citedreferenceBeusen, A. H. W., A. F. Bouwman, P. S. C. Heuberger, G. Van Drecht, and K. W. Van Der Hoek ( 2008 ), Bottom‐up uncertainty estimates of global ammonia emissions from global agricultural production systems, Atmos. Environ., 42 ( 24 ), 6067 – 6077.en_US
dc.identifier.citedreferenceBouwman, A. F., D. S. Lee, W. A. H. Asman, F. J. Dentener, K. W. Van Der Hoek, and J. G. J. Olivier ( 1997 ), A global high‐resolution emission inventory for ammonia, Global Biogeochem. Cycles, 11, 561 – 588, doi: 10.1029/97GB02266.en_US
dc.identifier.citedreferenceBronk, D. A., J. H. See, P. Bradley, and L. Killberg ( 2007 ), DON as a source of bioavailable nitrogen for phytoplankton, Biogeosciences, 4 ( 3 ), 283 – 296, doi: 10.5194/bg‐4‐283‐2007.en_US
dc.identifier.citedreferenceCalderón, S. M., N. D. Poor, and S. W. Campbell ( 2007 ), Estimation of the particle and gas scavenging contributions to wet deposition of organic nitrogen, Atmos. Environ., 41 ( 20 ), 4281 – 4290, doi: 10.1016/j.atmosenv.2006.06.067.en_US
dc.identifier.citedreferenceCape, J. N., S. E. Cornell, T. D. Jickells, and E. Nemitz ( 2011 ), Organic nitrogen in the atmosphere—Where does it come from? A review of sources and methods, Atmos. Res., 102, 30 – 48, doi: 10.1016/j.atmosres.2011.07.009.en_US
dc.identifier.citedreferenceCarrillo, J. H., M. G. Hastings, D. M. Sigman, and B. J. Huebert ( 2002 ), Atmospheric deposition of inorganic and organic nitrogen and base cations in Hawaii, Global Biogeochem. Cycles, 16 ( 4 ), 1076, doi: 10.1029/2002GB001892.en_US
dc.identifier.citedreferenceChang, S. G., and T. Novakov ( 1975 ), Formation of pollution particulate nitrogen compounds by NO‐soot and NH 3 ‐soot gas‐particle surface reactions, Atmos. Environ., 9, 495 – 504.en_US
dc.identifier.citedreferenceCornell, S. C. ( 2011 ), Atmospheric nitrogen deposition: Revisiting the question of the importance of the organic component, Environ. Pollut., 159, 2214 – 2222, doi: 10.1016/j.envpol.2010.11.014.en_US
dc.identifier.citedreferenceCornell, S., A. Rendell, and T. Jickells ( 1995 ), Atmospheric inputs of dissolved organic nitrogen to the oceans, Nature, 376, 243 – 246.en_US
dc.identifier.citedreferenceCornell, S. E., T. D. Jickells, and C. A. Thornton ( 1998 ), Urea in rainwater and atmospheric aerosol, Atmos. Environ., 32 ( 11 ), 1903 – 1910, doi: 10.1016/S1352‐2310(97)00487‐1.en_US
dc.identifier.citedreferenceCornell, S., K. Mace, S. Coeppicus, R. Duce, B. Huebert, T. Jickells, and L. Z. Zhuang ( 2001 ), Organic nitrogen in Hawaiian rain and aerosol, J. Geophys. Res., 106 ( D8 ), 7973 – 7983, doi: 10.1029/2000JD900655.en_US
dc.identifier.citedreferenceCornell, S. E., T. D. Jickells, J. N. Cape, A. P. Rowland, and R. A. Duce ( 2003 ), Organic nitrogen deposition on land and coastal environments: A review of methods and data, Atmos. Environ., 37, 2173 – 2191.en_US
dc.identifier.citedreferenceDe Haan, D. O., A. L. Corrigan, K. W. Smith, D. R. Stroik, J. J. Turley, F. E. Lee, M. A. Tolbert, J. L. Jimenez, K. E. Cordova, and G. R. Ferrell ( 2009a ), Secondary organic aerosol‐forming reactions of glyoxal with amino acids, Environ. Sci. Technol., 43 ( 8 ), 2818 – 2824.en_US
dc.identifier.citedreferenceDe Haan, D. O., M. A. Tolbert, and J. L. Jimenez ( 2009b ), Atmospheric condensed phase reactions of glyoxal with methylamine, Geophys. Res. Lett., 36, L11819, doi: 10.1029/2009GL037441.en_US
dc.identifier.citedreferenceDe Haan, D. O., L. N. Hawkins, J. A. Kononenko, J. J. Turley, A. L. Corrigan, M. A. Tolbert, and J. L. Jimenez ( 2010 ), Formation of nitrogen‐containing oligomers by methylglyoxal and amines in simulated evaporating cloud droplets, Environ. Sci. Tech., 45, 984 – 991, doi: 10.1021/es102933x.en_US
dc.identifier.citedreferenceDentener, F., et al. ( 2006 ), Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation, Global Biogeochem. Cycles, 20, GB4003, doi: 10.1029/2005GB002672.en_US
dc.identifier.citedreferenceDod, R. L., L. A. Gundel, W. H. Benner, and T. Novakov ( 1984 ), Non‐ammonium reduced nitrogen species in atmospheric aerosol particles, Sci. Total Environ., 36, 277 – 282.en_US
dc.identifier.citedreferenceDuce, A., et al. ( 2008 ), Impacts of atmospheric anthropogenic nitrogen on the open ocean, Science, 320, 893 – 897, doi: 10.1126/science.1150369.en_US
dc.identifier.citedreferenceEklund, T. J., W. H. McDowell, and C. Pringle ( 1997 ), Seasonal variation of tropical precipitation chemistry: La Selva, Costa Rica, Atmos. Environ., 31 ( 23 ), 3903 – 3910, doi: 10.1016/S1352‐2310(97)00246‐X.en_US
dc.identifier.citedreferenceErvens, B., B. J. Turpin, and R. J. Weber ( 2011 ), Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): A review of laboratory, field and model studies, Atmos. Chem. Phys., 11, 11,069 – 11,102, doi: 10.5194/acp‐11‐11069‐2011.en_US
dc.identifier.citedreferenceFacchini, M. C., et al. ( 2008 ), Important source of marine secondary organic aerosol from biogenic amines, Environ. Sci. Technol., 42 ( 24 ), 9116 – 9121, doi: 10.1021/es8018385.en_US
dc.identifier.citedreferenceFeng, Y., and J. E. Penner ( 2007 ), Global modeling of nitrate and ammonium: Interaction of aerosols and tropospheric chemistry, J. Geophys. Res., 112, D01304, doi: 10.1029/2005JD006404.en_US
dc.identifier.citedreferenceFisher, J. A., et al. ( 2011 ), Sources, distribution, and acidity of sulfate‐ammonium aerosol in the Arctic in winter‐spring, Atmos. Environ., 45, 7301 – 7318, doi: 10.1016/j.atmosenv.2011.08.030.en_US
dc.identifier.citedreferenceGalloway, J. N., A. R. Townsend, J. W. Erisman, M. Bekunda, Z. Cai, J. R. Freney, L. A. Martinelli, S. P. Seitzinger, and M. A. Sutton ( 2008 ), Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions, Science, 320 ( 889–892 ), 2008.en_US
dc.identifier.citedreferenceGalloway, M. M., P. S. Chhabra, A. W. H. Chan, J. D. Surratt, R. C. Flagan, J. H. Seinfeld, and F. N. Keutsch ( 2009 ), Glyoxal uptake on ammonium sulphate seed aerosol: Reaction products and reversibility of uptake under dark and irradiated conditions, Atmos. Chem. Phys., 9, 3331 – 3345, doi: 10.5194/acp‐9‐3331‐2009.en_US
dc.identifier.citedreferenceGantt, B., N. Meskhidze, and D. Kamykowski ( 2009 ), A new physically‐based quantification of marine isoprene and primary organic aerosol emissions, Atmos. Chem. Phys., 9, 4915 – 4927, doi: 10.5194/acp‐9‐4915‐2009.en_US
dc.identifier.citedreferenceGe, X., A. S. Wexler, and S. L. Clegg ( 2011 ), Atmospheric amines—Part I. A review, Atmos. Environ., 45, 524 – 546.en_US
dc.identifier.citedreferenceGiglio, L., I. Csiszar, and C. O. Justice ( 2006 ), Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, J. Geophys. Res., 111, G02016, doi: 10.1029/2005JG000142.en_US
dc.identifier.citedreferenceGioda, A., G. Reyes‐Rodríguez, J. L. Santos‐Figueroa, J. L. Collett, S. Decesari, M. D. C. K. V. Ramos, H. J. C. Bezarra Netto, F. R. de Aquino Neto, and O. L. Mayol‐Bracero ( 2011 ), Speciation of water‐soluble inorganic, organic, and total nitrogen in a background marine environment: Cloud water, rainwater, and aerosol particles, J. Geophys. Res., 116, D05203, doi: 10.1029/2010JD015010.en_US
dc.identifier.citedreferenceGoldstein, A. H., C. D. Koven, C. L. Heald, and I. Y. Fung ( 2009 ), Biogenic carbon and anthropogenic pollutants combine to form a cooling haze over the southeastern United States, Proc. Natl. Acad. Sci. U.S.A., 106, 8835 – 8840, doi: 10.1073/pnas.0904128106.en_US
dc.identifier.citedreferenceGonzález Benítez, J. M., J. N. Cape, M. R. Heal, N. van Dijk, and A. V. Díez ( 2009 ), Atmospheric nitrogen deposition in south‐east Scotland: Quantification of the organic nitrogen fraction in wet, dry and bulk deposition, Atmos. Environ., 43 ( 26 ), 4087 – 4094, doi: 10.1016/j.atmosenv.2009.04.061.en_US
dc.identifier.citedreferenceHallquist, M., et al. ( 2009 ), The formation, properties and impact of secondary organic aerosol: Current and emerging issues, Atmos. Chem. Phys., 9 ( 14 ), 5155 – 5236.en_US
dc.identifier.citedreferenceHertel, O., et al. ( 2012 ), Governing processes for reactive nitrogen compounds in the European atmosphere, Biogeosciences, 9, 4921 – 4954, doi: 10.5194/bg‐9‐4921‐2012.en_US
dc.identifier.citedreferenceHolland, E. A., et al. ( 1997 ), Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems, J. Geophys. Res., 102, 15,849 – 15,866, doi: 10.1029/96JD03164.en_US
dc.identifier.citedreferenceIto, A. ( 2011 ), Mega fire emissions in Siberia: Potential supply of bioavailable iron from forests to the ocean, Biogeosciences, 8, 1679 – 1697.en_US
dc.identifier.citedreferenceIto, A. ( 2013 ), Global modeling study of potentially bioavailable iron input from shipboard aerosol sources to the ocean, Global Biogeochem. Cycles, 27, 1 – 10, doi: 10.1029/2012GB004378.en_US
dc.identifier.citedreferenceIto, A., and Y. Feng ( 2010 ), Role of dust alkalinity in acid mobilization of iron, Atmos. Chem. Phys., 10, 9237 – 9250.en_US
dc.identifier.citedreferenceIto, A., and M. Kawamiya ( 2010 ), Potential impact of ocean ecosystem changes due to global warming on marine organic carbon aerosols, Global Biogeochem. Cycles, 24, GB1012, doi: 10.1029/2009GB003559.en_US
dc.identifier.citedreferenceIto, A., and J. E. Penner ( 2004 ), Global estimates of biomass burning emissions based on satellite imagery for the year 2000, J. Geophys. Res., 109, D14S05, doi: 10.1029/2003JD004423.en_US
dc.identifier.citedreferenceIto, A., and J. E. Penner ( 2005 ), Historical emissions of carbonaceous aerosols from biomass and fossil fuel burning for the period 1870–2000, Global Biogeochem. Cycles, 19, GB2028, doi: 10.1029/2004GB002374.en_US
dc.identifier.citedreferenceIto, A., and L. Xu ( 2014 ), Response of acid mobilization of iron‐containing mineral dust to improvement of air quality projected in the future, Atmos. Chem. Phys., 14, 3441 – 3459, doi: 10.5194/acp‐14‐3441‐2014.en_US
dc.identifier.citedreferenceIto, A., A. Ito, and H. Akimoto ( 2007a ), Seasonal and interannual variations in CO and BC emissions from open biomass burning in Southern Africa during 1998–2005, Global Biogeochem. Cycles, 21, GB2011, doi: 10.1029/2006GB002848.en_US
dc.identifier.citedreferenceIto, A., S. Sillman, and J. E. Penner ( 2007b ), Effects of additional nonmethane volatile organic compounds, organic nitrates, and direct emissions of oxygenated organic species on global tropospheric chemistry, J. Geophys. Res., 112, D06309, doi: 10.1029/2005JD006556.en_US
dc.identifier.citedreferenceIto, A., S. Sillman, and J. E. Penner ( 2009 ), Global chemical transport model study of ozone response to changes in chemical kinetics and biogenic volatile organic compounds emissions due to increasing temperatures: Sensitivities to isoprene nitrate chemistry and grid resolution, J. Geophys. Res., 114, D09301, doi: 10.1029/2008JD011254.en_US
dc.identifier.citedreferenceJickells, T., A. R. Baker, J. N. Cape, S. E. Cornell, and E. Nemitz ( 2013 ), The cycling of organic nitrogen through the atmosphere, Phil. Trans. R. Soc. B, 368, 2013115, doi: 10.1098/rstb.2013.0115.en_US
dc.identifier.citedreferenceKanakidou, M., et al. ( 2012 ), Atmospheric fluxes of organic N and P to the global ocean, Global Biogeochem. Cycles, 26, GB3026, doi: 10.1029/2011GB004277.en_US
dc.identifier.citedreferenceKarthikeyan, S., J. He, S. Palani, R. Balasubramanian, and D. Burger ( 2009 ), Determination of total nitrogen in atmospheric wet and dry deposition samples, Talanta, 77 ( 3 ), 979 – 984, doi: 10.1016/j.talanta.2008.07.053.en_US
dc.identifier.citedreferenceKeene, W. C., J. A. Montag, J. R. Maben, M. Southwell, J. Leonard, T. M. Church, J. L. Moody, and J. N. Galloway ( 2002 ), Organic nitrogen in precipitation over Eastern North America, Atmos. Environ., 36, 4529 – 4540, doi: 10.1016/S1352‐2310(02)00403‐X.en_US
dc.identifier.citedreferenceKieber, R. J., M. S. Long, and J. Willey ( 2005 ), Factors influencing nitrogen speciation in coastal rainwater, J. Atmos. Chem., 52 ( 1 ), 81 – 99, doi: 10.1007/s10874‐005‐8354‐6.en_US
dc.identifier.citedreferenceLamarque, J.‐F., et al. ( 2010 ), Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application, Atmos. Chem. Phys., 10, 7017 – 7039.en_US
dc.identifier.citedreferenceLamarque, J.‐F., et al. ( 2013 ), Multi‐model mean nitrogen and sulfur deposition from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Evaluation of historical and projected future changes, Atmos. Chem. Phys., 13, 7997 – 8018, doi: 10.5194/acp‐13‐7997‐2013.en_US
dc.identifier.citedreferenceLaskin, A., J. S. Smith, and J. Laskin ( 2009 ), Molecular characterization of nitrogen‐containing organic compounds in biomass burning aerosols using high‐resolution mass spectrometry, Environ. Sci. Technol., 43 ( 10 ), 3764 – 3771.en_US
dc.identifier.citedreferenceLesworth, T., A. R. Baker, and T. Jickells ( 2010 ), Aerosol organic nitrogen over the remote Atlantic Ocean, Atmos. Environ., 44 ( 15 ), 1887 – 1893, doi: 10.1016/j.atmosenv.2010.02.021.en_US
dc.identifier.citedreferenceLin, G., J. E. Penner, S. Sillman, D. Taraborrelli, and J. Lelieveld ( 2012 ), Global modeling of SOA formation from dicarbonyls, epoxides, organic nitrates and peroxides, Atmos. Chem. Phys., 12, 4743 – 4774, doi: 10.5194/acp‐12‐4743‐2012.en_US
dc.identifier.citedreferenceLiu, H., D. J. Jacob, I. Bey, and R. M. Yantosca ( 2001 ), Constraints from 210 Pb and 7 Be on wet deposition and transport in a global three‐dimensional chemical tracer model driven by assimilated meteorological fields, J. Geophys. Res., 106, 12,109 – 12,128, doi: 10.1029/2000JD900839.en_US
dc.identifier.citedreferenceLiu, X., J. E. Penner, and M. Herzog ( 2005 ), Global modeling of aerosol dynamics: Model description, evaluation and interactions between sulfate and non‐sulfate aerosols, J. Geophys. Res., 110, D18206, doi: 10.1029/2004JD005674.en_US
dc.identifier.citedreferenceLuo, Y., X. Yang, R. J. Carley, and C. Perkins ( 2002 ), Atmospheric deposition of nitrogen along the Connecticut coastline of Long Island Sound: A decade of measurements, Atmos. Environ., 36 ( 28 ), 4517 – 4528, doi: 10.1016/S1352‐2310(02)00421‐1.en_US
dc.identifier.citedreferenceMace, K. A., P. Artaxo, and R. A. Duce, ( 2003a ) Water‐soluble organic nitrogen in Amazon Basin aerosols during the dry (biomass burning) and wet seasons, J. Geophys. Res., 108 ( D16 ), 4512, doi: 10.1029/2003JD003557.en_US
dc.identifier.citedreferenceMace, K. A., N. Kubilay, and R. A. Duce ( 2003b ), Organic nitrogen in rain and aerosol in the eastern Mediterranean atmosphere: An association with atmospheric dust, J. Geophys. Res., 108 ( D10 ), 4320, doi: 10.1029/2002JD002997.en_US
dc.identifier.citedreferenceMari, C., D. J. Jacob, and P. Bechtold ( 2000 ), Transport and scavenging of soluble gases in a deep convective cloud, J. Geophys. Res., 105, 22,255 – 22,267, doi: 10.1029/2000JD900211.en_US
dc.identifier.citedreferenceMilne, P. G., and R. G. Zika ( 1993 ), Amino acid nitrogen in atmospheric aerosols: Occurrence, sources and photochemical modification, J. Atmos. Chem., 16, 361 – 398, doi: 10.1007/BF01032631.en_US
dc.identifier.citedreferenceMiyazaki, Y., K. Kawamura, J. Jung, H. Furutani, and M. Uematsu ( 2011 ), Latitudinal distributions of organic nitrogen and organic carbon in marine aerosols over the western North Pacific, Atmos. Chem. Phys., 11, 3037 – 3049, doi: 10.5194/acp‐11‐3037‐2011.en_US
dc.identifier.citedreferenceMukai, H., and Y. Ambe ( 1986 ), Characterization of a humic acid‐like brown substance in airborne particulate matter and tentative, identification of its origin, Atmos. Environ., 20, 813 – 819.en_US
dc.identifier.citedreferenceNakamura, T., H. Ogawa, D. K. Maripi, and M. Uematsu ( 2006 ), Contribution of water soluble organic nitrogen to total nitrogen in marine aerosols over the East China Sea and western North Pacific, Atmos. Environ., 40, 7259 – 7264.en_US
dc.identifier.citedreferenceNguyen, T. B., M. M. Coggon, K. H. Bates, X. Zhang, R. H. Schwantes, K. A. Schilling, C. L. Loza, R. C. Flagan, P. O. Wennberg, and J. H. Seinfeld ( 2014 ), Organic aerosol formation from the reactive uptake of isoprene epoxydiols (IEPOX) onto non‐acidified inorganic seeds, Atmos. Chem. Phys., 14, 3497 – 3510, doi: 10.5194/acp‐14‐3497‐2014.en_US
dc.identifier.citedreferenceNoziére, B., P. Dziedzic, and A. Cordova ( 2009 ), Products and kinetics of the liquid‐phase reaction of glyoxal catalysed by ammonium ions (NH 4 + ), J. Phys. Chem. A, 113, 231 – 237.en_US
dc.identifier.citedreferencePeierls, B. L., and H. W. Paerl ( 1997 ), Bioavailability of atmospheric organic nitrogen deposition to coastal phytoplankton, Limnol. Oceanogr., 42 ( 8 ), 1819 – 1823, doi: 10.4319/lo.1997.42.8.1819.en_US
dc.identifier.citedreferenceReay, D. S., F. Dentener, P. Smith, J. Grace, and R. A. Feely ( 2008 ), Global nitrogen deposition and carbon sinks, Nat. Geosci., 1, 430 – 437.en_US
dc.identifier.citedreferenceRendell, A. R., C. J. Ottley, T. D. Jickells, and R. M. Harrison ( 1993 ), The atmospheric input of nitrogen species to the North Sea, Tellus Ser. B, 45 ( 1 ), 53 – 63, doi: 10.1034/j.1600‐0889.1993.00005.x.en_US
dc.identifier.citedreferenceRobinson, A. L., N. M. Donahue, M. K. Shrivastava, E. A. Weitkamp, A. M. Sage, A. P. Grieshop, T. E. Lane, J. R. Pierce, and S. N. Pandis ( 2007 ), Rethinking organic aerosols: Semivolatile emissions and photochemical aging, Science, 315, 1259 – 1262.en_US
dc.identifier.citedreferenceRolff, C., R. Elmgren, and M. Voss ( 2008 ), Deposition of nitrogen and phosphorus on the Baltic Sea: Seasonal patterns and nitrogen isotope composition, Biogeosciences, 5, 1657 – 1667, doi: 10.5194/bg‐5‐1657‐2008.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.