Show simple item record

Estimating Preferential Flow in Karstic Aquifers Using Statistical Mixed Models

dc.contributor.authorAnaya, Angel A.en_US
dc.contributor.authorPadilla, Ingriden_US
dc.contributor.authorMacchiavelli, Raulen_US
dc.contributor.authorVesper, Dorothy J.en_US
dc.contributor.authorMeeker, John D.en_US
dc.contributor.authorAlshawabkeh, Akram N.en_US
dc.date.accessioned2014-08-06T16:49:47Z
dc.date.availableWITHHELD_12_MONTHSen_US
dc.date.available2014-08-06T16:49:47Z
dc.date.issued2014-07en_US
dc.identifier.citationAnaya, Angel A.; Padilla, Ingrid; Macchiavelli, Raul; Vesper, Dorothy J.; Meeker, John D.; Alshawabkeh, Akram N. (2014). "Estimating Preferential Flow in Karstic Aquifers Using Statistical Mixed Models." Groundwater 52(4): 584-596.en_US
dc.identifier.issn0017-467Xen_US
dc.identifier.issn1745-6584en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108043
dc.description.abstractKarst aquifers are highly productive groundwater systems often associated with conduit flow. These systems can be highly vulnerable to contamination, resulting in a high potential for contaminant exposure to humans and ecosystems. This work develops statistical models to spatially characterize flow and transport patterns in karstified limestone and determines the effect of aquifer flow rates on these patterns. A laboratory‐scale Geo‐ HydroBed model is used to simulate flow and transport processes in a karstic limestone unit. The model consists of stainless steel tanks containing a karstified limestone block collected from a karst aquifer formation in northern Puerto Rico. Experimental work involves making a series of flow and tracer injections, while monitoring hydraulic and tracer response spatially and temporally. Statistical mixed models (SMMs) are applied to hydraulic data to determine likely pathways of preferential flow in the limestone units. The models indicate a highly heterogeneous system with dominant, flow‐dependent preferential flow regions. Results indicate that regions of preferential flow tend to expand at higher groundwater flow rates, suggesting a greater volume of the system being flushed by flowing water at higher rates. Spatial and temporal distribution of tracer concentrations indicates the presence of conduit‐like and diffuse flow transport in the system, supporting the notion of both combined transport mechanisms in the limestone unit. The temporal response of tracer concentrations at different locations in the model coincide with, and confirms the preferential flow distribution generated with the SMMs used in the study.en_US
dc.publisherBlackwell Publishing Ltden_US
dc.publisherWiley Periodicals, Inc.en_US
dc.titleEstimating Preferential Flow in Karstic Aquifers Using Statistical Mixed Modelsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenten_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109; meekerj@umich.eduen_US
dc.contributor.affiliationotherDepartment of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115; aalsha@coe.neu.eduen_US
dc.contributor.affiliationotherDepartment of Civil Engineering and Surveying, University of Puerto Rico, Mayagüez, PR 00681; angel.anaya@upr.eduen_US
dc.contributor.affiliationotherDepartment of Crops and Agro‐Environmental Sciences, University of Puerto Rico, Mayagüez, PR 00681; raul.macciavelli@upr.eduen_US
dc.contributor.affiliationotherDepartment of Geology & Geography, West Virginia University, Morgantown, WV 26506; dorothy.vesper@mail.wvu.eduen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108043/1/gwat12084.pdf
dc.identifier.doi10.1111/gwat.12084en_US
dc.identifier.sourceGroundwateren_US
dc.identifier.citedreferenceRenken, R.A., K.J. Cunningham, A.M. Shapiro, R.W. Harvey, M.R. Zygnerski, D.W. Metge, and M.A. Wacker. 2008. Pathogen and chemical transport in the karst limestone of the Biscayne aquifer: 1. Revised conceptualization of groundwater flow. Water Resources Research 44: W08429.en_US
dc.identifier.citedreferenceMylroie, J.E. 2001. Karst features of Guam in terms of a general model of carbonate island karst. Journal of Cave and Karst Studies 63, no. 1: 9 – 22.en_US
dc.identifier.citedreferenceMylroie, J.R., and J.E. Mylroie. 2007. Development of carbonate island karst model. Journal of Cave and Karst Studies 69, no. 1: 59 – 75.en_US
dc.identifier.citedreferenceOliver, M.A. 2010. Geostatistical Applications for Precision Agriculture, 1st ed. Dordrecht, Netherlands: Springer. DOI: 10.1007/978‐90‐481‐9133‐8en_US
dc.identifier.citedreferencePadilla, I.Y., C. Irizarry, and K. Steele. 2011. Historical contamination of groundwater resources in the north coast karst aquifer of Puerto Rico. Dimension 25, no. 3: 7 – 12.en_US
dc.identifier.citedreferencePeterson, E.E., and J.M. Ver Hoef. 2010. A mixed‐model moving‐average approach to geostatistical modeling in stream networks. Ecology 91, no. 3: 644 – 651.en_US
dc.identifier.citedreferenceReimann, T., and M.E. Hill. 2009. MODFLOW‐CFP: A new conduit flow process for MODFLOW–2005. Ground Water 43, no. 3: 321 – 325.en_US
dc.identifier.citedreferenceRenken, R.A., W.C. Ward, I.P Gill, F. Gomez‐Gomez, and J. Rodriguez‐Martinez. 2002. Geology and hydrogeology of the Caribbean Islands aquifer system of the commonwealth of Puerto Rico and the U.S. Virgin Islands. USGS Professional Paper 1419. Reston, Virginia: U.S. Geological Survey.en_US
dc.identifier.citedreferenceSAS Institute, Inc. 2008. SAS/STAT 9.1 User's Guide: The Mixed Procedure. Cary, North Carolina: SAS Press.en_US
dc.identifier.citedreferenceSauter, M., T. Geyer, A. Kovacs, and G. Teutsch. 2006. Modellierung der Hydraulik von Karstgrund‐25 wasserleitern—Eine Ubersicht. Grundwasser 3: 143 – 156. DOI: 10.1007/s00767‐006‐0140‐0en_US
dc.identifier.citedreferenceScanlon, B.R., K. Keese, and R.C. Reedy. 2003. Variations in flow and transport in thick desert vadose zones in response to paleoclimatic forcing (0–90 kyr): field measurements, modeling, and uncertainties. Water Resources Research 39, no. 7: 1179 – 1195. DOI:1110.1029/2002WR001604en_US
dc.identifier.citedreferenceScreaton, E., J.B. Martin, B. Ginn, and L. Smith. 2004. Conduit properties and karstification in the unconfined Floridian Aquifer. Ground Water 42, no. 3: 338 – 346.en_US
dc.identifier.citedreferenceSchabenberger, O., and C. Gotway. 2005. Statistical Methods for Spatial Data Analysis. Boca Raton, Florida: Chapman & Hall/CRC.en_US
dc.identifier.citedreferenceShapiro, A.W., R.A. Renken, R.W. Harvey, M.R. Zygnerski, and D.W. Metge. 2008. Pathogen and chemical transport in the karst limestone of the Biscayne aquifer: 2. Chemical retention from diffusion and slow advection. Water Resources Research 44: W08430.en_US
dc.identifier.citedreferenceSherman, M. 2011. Spatial Statistical and Spatio‐Temporal Data: Covariance functions and Directional Properties, 1st ed. Chichester, England: John Wiley & Sons.en_US
dc.identifier.citedreferenceTeutsch, G., and M. Sauter. 1998. Distributed parameter modelling approaches in karst hydrological investigations. Bulletin d'Hydrogeologie: 99 – 110 Special issue no. 16.en_US
dc.identifier.citedreferenceVacher, H.L., and J.E. Mylroie. 2002. Eogenetic Karst from the perspective of an equivalent porous medium. Carbonates and Evaporites 17, no. 2: 182 – 196.en_US
dc.identifier.citedreferenceVesper, D.J., C.M. Loop, and W.B. White. 2001. Contaminants transport in karst aquifers. Theoretical and Applied Karstology 13–14: 101 – 111.en_US
dc.identifier.citedreferenceWhite, W.B. 2002. Karst hydrology: Recent developments and open questions. Engineering Geology 65, no. 2‐3: 85 – 105.en_US
dc.identifier.citedreferenceWhite, W.B. 1999. Groundwater flow and transport in karst. In The Handbook of Groundwater Engineering, ed. J.W. Delleur. Boca Raton, Florida: CRC Press.en_US
dc.identifier.citedreferenceWolfe, W.J., and C.J. Haugh. 2001. Preliminary conceptual models of chlorinated‐solvent accumulation in karst aquifers. In Proceedings of U.S. Geological Survey Karst Interest Group, Water‐Resources Investigations. Report 01‐4011:157–162.en_US
dc.identifier.citedreferenceWolfe, W.J., C.J. Haugh, A. Webbers, and T.H. Diehl. 1997. Preliminary conceptual models of the occurrence, fate, and transport of chlorinated solvents in karst regions of Tennessee, USGS Water‐Resources Investigations Report 97‐4097, Reston, Virginia: U.S. Geological Survey.en_US
dc.identifier.citedreferenceZack, A., T. Rodriguez‐Alonso, and A. Romas‐Mas. 1987. Puerto Rico Groundwater Quality. USGS, Open File Report 87‐0749, Reston, Virginia: U.S. Geological Survey.en_US
dc.identifier.citedreferenceGiusti, E.V. 1978. Hydrogeology of the karst of Puerto Rico. USGS. Professional Paper 1012. Reston, Virginia: U.S. Geological Survey.en_US
dc.identifier.citedreferenceGolden Software, Inc. 2002. Surfer 8 Users' Guide. Golden, Colorado: Golden Software Inc.en_US
dc.identifier.citedreferenceGöppert, N., and N. Goldscheider. 2008. Solute and colloid transport in karst conduits under low‐ and high‐flow conditions. Ground Water 46, no. 1: 61 – 68.en_US
dc.identifier.citedreferenceGreen, R.T., S.L. Painter, A. Sun, and S.R.H. Worthington. 2006. Groundwater contamination in karst terranes. Water, Air, and Soil Pollution Focus 6, no. 1–2: 157 – 170. DOI: 10.1007/s11267‐005‐9004‐3en_US
dc.identifier.citedreferenceHill, M.E. 2008. An evaluation of conduit conceptualizations and model performance. Ph.D. dissertation, Department of Geology, University of South Florida, Tampa.en_US
dc.identifier.citedreferenceBailly‐Comte, V., J.B. Martin, H. Jourde, E.J. Screaton, S. Pistre, and A. Langston. 2010. Water exchange and pressure transfer between conduits and matrix and their influence on hydrodynamics of two karst aquifers with sinking streams. Journal of Hydrology 386, no. 1–4: 55 – 66.en_US
dc.identifier.citedreferenceBirk, S., R. Liedl, and M. Sauter. 2006. Karst spring responses examined by process‐based modeling. Ground Water 44, no. 6: 832 – 836.en_US
dc.identifier.citedreferenceBurnham, K.P., and D.R. Anderson. 2004. Multimodel inference: Understanding AIC and BIC in model selection. Sociological Methods and Research 33, no. 2: 261 – 304.en_US
dc.identifier.citedreferenceClemens, T., D. Hûckinghaus, M. Sauter, R. Liedl, and G. Teutsch. 1996. A combined continuum and discrete network reactive transport model for the simulation of karst development. In Proceedings of Calibration and Reliability in Groundwater Modeling, ModelCARE 96 Conference, eds. K. Kovar and P.V. Heijde, September 1996, 309–318. Golden, Colorado: IAHS Published no. 237.en_US
dc.identifier.citedreferenceCurl, R.L. 1999. Entranceless and fractal caves revisited. In Karst Modeling, eds. A.N. Palmer, M.V. Palmer, and I.D. Sasowsky, 183 – 185. Charlottesville, Virginia: Karst Waters Institute Special Publication 5.en_US
dc.identifier.citedreferenceDreiss, S.J. 1989. Regional scale transport in a karst aquifer. Water Resources Research 25, no. 1: 126 – 134.en_US
dc.identifier.citedreferenceEinsiedl, F. 2005. Flows systems dynamics and water storage of a fissured‐porous karst aquifer characterized by artificial and environmental tracers. Journal of Hydrology 312, no. 4: 312 – 321.en_US
dc.identifier.citedreferenceFaulker, J.A. 2008. Laboratory analog study of groundwater flow and solute transport in karst aquifers with conduit and matrix domains. M.S. thesis, The Florida State University. Electronic Theses, Treatises and Dissertations. Paper 4493. http://diginole.lib.fsu.edu/etd/4493.en_US
dc.identifier.citedreferenceField, M.S., and P.F. Pinsky. 2000. A two‐region nonequilibrium model for solute transport in solution conduits in karstic aquifers. Journal of Contaminant Hydrology 44, no. 3‐4: 329 – 351.en_US
dc.identifier.citedreferenceField, M.S., and S.G. Nash. 1997. Risk assessment methodology for karst aquifers: (1) Estimating karst conduit‐flow parameters. Environmental Monitoring and Assessment 47, no. 1: 1 – 21.en_US
dc.identifier.citedreferenceField, M.S. 1997. Risk assessment methodology for karst aquifers: (2) Solute transport modeling. Environmental Monitoring and Assessment 47, no. 1: 23 – 37.en_US
dc.identifier.citedreferenceFlorea, L.J., and C.M. Wicks. 2001. Solute transport through laboratory‐scale karstic aquifers. Journal of Cave and Karst Studies 63, no. 2: 59 – 66.en_US
dc.identifier.citedreferenceFord, D.C., and P. Williams. 2007. Karst Hydrogeology and Geomorphology, 2nd ed. Chichester, England: John Wiley & Sons.en_US
dc.identifier.citedreferenceGeyer, T., S. Birk, T. Licha, R. Liedl, and M. Sauter. 2007. Multitracer test approach to characterize reactive transport in karst aquifers. Ground Water 45, no. 1: 36 – 45.en_US
dc.identifier.citedreferenceJaquet, O., P. Siegel, G. Klubertanz, and H. Benabderrhamane. 2004. Stochastic discrete model of karstic networks. Advances in Water Resources 27, no. 7: 751 – 760.en_US
dc.identifier.citedreferenceKovacs, A., and M. Sauter. 2007. Modeling karst hydrodynamics. In Methods in Karst Hydrology, eds. N. Goldscheider and D. Drew, 201 – 222. London, England: Taylor and Francis.en_US
dc.identifier.citedreferenceLapcevic, P.A., K.S. Novakowski, and E.A. Sudicky. 1999. The interpretation of a tracer experiment conducted in a single fracture under conditions of natural groundwater flow. Water Resources Research 35, no. 8: 2301 – 2312.en_US
dc.identifier.citedreferenceLi, G. 2004. Laboratory simulation of solute transport and retention in karst aquifer. Doctoral thesis, The Florida State University.en_US
dc.identifier.citedreferenceLittell, R.C., G.A. Milliken, W.W. Stroup, R.D. Wolfinger, and O. Schabenberger. 2006. SAS for Mixed Models, 2nd ed. Cary, North Carolina: SAS Press.en_US
dc.identifier.citedreferenceLoop, C.V.M., and W.B. White. 2001. A conceptual model for DNAPL transport in karst groundwater basins. Ground Water 39, no. 1: 119 – 127.en_US
dc.identifier.citedreferenceMace, R.E., R.A. Marrett, and D.D. Hovorka. 2005. Fractal scaling of secondary porosity in karstic exposures of the Edwards Aquifer. In Sinkholes and the Engineering and Environmental Impacts of Karst, ed. B.F. Beck, 129 – 146. Reston, Virginia: American Society of Civil Engineers Geotechnical Special Publication 144.en_US
dc.identifier.citedreferenceMartin, J.B., and R.W. Dean. 2001. Exchange of water between conduits and matrix in the Floridan aquifer. Chemical Geology 179, no. 1–4: 145 – 165.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.