Show simple item record

Principles and Operational Parameters to Optimize Poison Removal with Extracorporeal Treatments

dc.contributor.authorBouchard, Joséeen_US
dc.contributor.authorRoberts, Darren M.en_US
dc.contributor.authorRoy, Louiseen_US
dc.contributor.authorOuellet, Georgesen_US
dc.contributor.authorDecker, Brian S.en_US
dc.contributor.authorMueller, Bruce A.en_US
dc.contributor.authorDesmeules, Simonen_US
dc.contributor.authorGhannoum, Marcen_US
dc.date.accessioned2014-08-06T16:49:51Z
dc.date.availableWITHHELD_12_MONTHSen_US
dc.date.available2014-08-06T16:49:51Z
dc.date.issued2014-07en_US
dc.identifier.citationBouchard, Josée ; Roberts, Darren M.; Roy, Louise; Ouellet, Georges; Decker, Brian S.; Mueller, Bruce A.; Desmeules, Simon; Ghannoum, Marc (2014). "Principles and Operational Parameters to Optimize Poison Removal with Extracorporeal Treatments." Seminars in Dialysis 27(4): 371-380.en_US
dc.identifier.issn0894-0959en_US
dc.identifier.issn1525-139Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108055
dc.description.abstractA role for nephrologists in the management of a poisoned patient involves evaluating the indications for, and methods of, enhancing the elimination of a poison. Nephrologists are familiar with the various extracorporeal treatments ( ECTR s) used in the management of impaired kidney function, and their respective advantages and disadvantages. However, these same skills and knowledge may not always be considered, or applicable, when prescribing ECTR for the treatment of a poisoned patient. Maximizing solute elimination is a key aim of such treatments, perhaps more so than in the treatment of uremia, because ECTR has the potential to reverse clinical toxicity and shorten the duration of poisoning. This manuscript reviews the various principles that govern poison elimination by ECTR (diffusion, convection, adsorption, and centrifugation) and how components of the ECTR can be adjusted to maximize clearance. Data supporting these recommendations will be presented, whenever available.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.titlePrinciples and Operational Parameters to Optimize Poison Removal with Extracorporeal Treatmentsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelInternal Medicine and Specialtiesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108055/1/sdi12247.pdf
dc.identifier.doi10.1111/sdi.12247en_US
dc.identifier.sourceSeminars in Dialysisen_US
dc.identifier.citedreferenceCheung AK, Leypoldt JK: The hemodialysis membranes: a historical perspective, current state and future prospect. Semin Nephrol 17: 196 – 213, 1997en_US
dc.identifier.citedreferenceBoyle M, Wyndham K, Jacobs S, Torda TA: Comparative clearance performance of two dialyser units used in the CVVHD mode. Aust Crit Care 8: 20 – 25, 1995en_US
dc.identifier.citedreferencePasko DA, Churchwell MD, Salama NN, Mueller BA: Longitudinal hemodiafilter performance in modeled continuous renal replacement therapy. Blood Purif 32: 82 – 88, 2011en_US
dc.identifier.citedreferenceHazouard E, Ferrandiere M, Rateau H, Doucet O, Perrotin D, Legras A: Continuous veno‐venous haemofiltration versus continuous veno‐venous haemodialysis in severe lithium self‐poisoning: a toxicokinetics study in an intensive care unit. Nephrol Dial Transplant 14: 1605 – 1606, 1999en_US
dc.identifier.citedreferenceLornoy W, De Meester J, Becaus I, Billiouw JM, Van Malderen PA, Van Pottelberge M: Impact of convective flow on phosphorus removal in maintenance hemodialysis patients. J Ren Nutr 16: 47 – 53, 2006en_US
dc.identifier.citedreferenceMadore F: Plasmapheresis technical aspects and indications. Crit Care Clin 18 ( 2 ): 375 – 392, 2002en_US
dc.identifier.citedreferenceTan HK, Hart G: Plasma filtration. Ann Acad Med Singapore 34: 615 – 624, 2005en_US
dc.identifier.citedreferenceJones JS, Dougherty J: Current status of plasmapheresis in toxicology. Ann Emerg Med 15: 474 – 482, 1986en_US
dc.identifier.citedreferenceShelat SG: Practical considerations for planning a therapeutic apheresis procedure. Am J Med 123: 777 – 784, 2010en_US
dc.identifier.citedreferenceSzczepiorkowski ZM, Winters JL, Bandarenko N, Kim HC, Linenberger ML, Marques MB, Sarode R, Schwartz J, Weinstein R, Shaz BH; Apheresis Applications Committee of the American Society for A: Guidelines on the use of therapeutic apheresis in clinical practice–evidence‐based approach from the Apheresis Applications Committee of the American Society for Apheresis. J Clin Apher 25: 83 – 177, 2010en_US
dc.identifier.citedreferenceTreysman L, Meehan TJ, Schlieben DJ, Ducre B, Erickson TB: Pharmacokinetic Modeling of Lithium Elimination During 67 Continuous Hours of High Flux Hemodialysis (abstract). Clin Toxicol 48: 647, 2010en_US
dc.identifier.citedreferenceParienti JJ, Megarbane B, Fischer MO, Lautrette A, Gazui N, Marin N, Hanouz JL, Ramakers M, Daubin C, Mira JP, Charbonneau P, du Cheyron D; Cathedia Study G: Catheter dysfunction and dialysis performance according to vascular access among 736 critically ill adults requiring renal replacement therapy: a randomized controlled study. Crit Care Med 38: 1118 – 1125, 2010en_US
dc.identifier.citedreferenceKidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group: KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Int Suppl 2: 1 – 138, 2012en_US
dc.identifier.citedreferenceKelber J, Delmez JA, Windus DW: Factors affecting delivery of high‐efficiency dialysis using temporary vascular access. Am J Kidney Dis 22: 24 – 29, 1993en_US
dc.identifier.citedreferenceLeblanc M, Fedak S, Mokris G, Paganini EP: Blood recirculation in temporary central catheters for acute hemodialysis. Clin Nephrol 45: 315 – 319, 1996en_US
dc.identifier.citedreferenceLittle MA, Conlon PJ, Walshe JJ: Access recirculation in temporary hemodialysis catheters as measured by the saline dilution technique. Am J Kidney Dis 36: 1135 – 1139, 2000en_US
dc.identifier.citedreferenceOkafor C, Kalantarinia K: Vascular access considerations for therapeutic apheresis procedures. Semin Dial 25: 140 – 144, 2012en_US
dc.identifier.citedreferenceSchonermarck U, Bosch T: Vascular access for apheresis in intensive care patients. Ther Apher Dial 7: 215 – 220, 2003en_US
dc.identifier.citedreferenceMcGill RL, Blas A, Bialkin S, Sandroni SE, Marcus RJ: Clinical consequences of heparin‐free hemodialysis. Hemodial Int 9: 393 – 398, 2005en_US
dc.identifier.citedreferenceMartin PY, Chevrolet JC, Suter P, Favre H: Anticoagulation in patients treated by continuous venovenous hemofiltration: a retrospective study. Am J Kidney Dis 24: 806 – 812, 1994en_US
dc.identifier.citedreferenceUchino S, Fealy N, Baldwin I, Morimatsu H, Bellomo R: Pre‐dilution vs. post‐dilution during continuous veno‐venous hemofiltration: impact on filter life and azotemic control. Nephron Clin Pract 94: c94 – c98, 2003en_US
dc.identifier.citedreferencevan der Voort PH, Gerritsen RT, Kuiper MA, Egbers PH, Kingma WP, Boerma EC: Filter run time in CVVH: pre‐ versus post‐dilution and nadroparin versus regional heparin‐protamine anticoagulation. Blood Purif 23: 175 – 180, 2005en_US
dc.identifier.citedreferenceRoberts DM, Buckley NA: Pharmacokinetic considerations in clinical toxicology: clinical applications. Clin Pharmacokinet 46: 897 – 939, 2007en_US
dc.identifier.citedreferenceSirich TL, Luo FJ, Plummer NS, Hostetter TH, Meyer TW: Selectively increasing the clearance of protein‐bound uremic solutes. Nephrol Dial Transplant 27: 1574 – 1579, 2012en_US
dc.identifier.citedreferenceMandolfo S, Malberti F, Imbasciati E, Cogliati P, Gauly A: Impact of blood and dialysate flow and surface on performance of new polysulfone hemodialysis dialyzers. Int J Artif Organs 26: 113 – 120, 2003en_US
dc.identifier.citedreferenceAllen R, Frost TH, Hoenich NA: The influence of the dialysate flow rate on hollow fiber hemodialyzer performance. Artif Organs 19: 1176 – 1180, 1995en_US
dc.identifier.citedreferenceLeypoldt JK, Cheung AK, Agodoa LY, Daugirdas JT, Greene T, Keshaviah PR: Hemodialyzer mass transfer‐area coefficients for urea increase at high dialysate flow rates. The Hemodialysis (HEMO) Study. Kidney Int 51: 2013 – 2017, 1997en_US
dc.identifier.citedreferenceOuseph R, Ward RA: Increasing dialysate flow rate increases dialyzer urea mass transfer‐area coefficients during clinical use. Am J Kidney Dis 37: 316 – 320, 2001en_US
dc.identifier.citedreferenceBorzou SR, Gholyaf M, Zandiha M, Amini R, Goodarzi MT, Torkaman B: The effect of increasing blood flow rate on dialysis adequacy in hemodialysis patients. Saudi J Kidney Dis Transpl 20: 639 – 642, 2009en_US
dc.identifier.citedreferenceMunshi R, Ahmad S: Comparison of urea clearance in low‐efficiency low‐flux vs. high‐efficiency high‐flux dialyzer membrane with reduced blood dialysate flow An in vitro analysis. Hemodial Int 18: 172 – 174, 2014en_US
dc.identifier.citedreferenceGutzwiller JP, Schneditz D, Huber AR, Schindler C, Garbani E, Zehnder CE: Increasing blood flow increases kt/V(urea) and potassium removal but fails to improve phosphate removal. Clin Nephrol 59: 130 – 136, 2003en_US
dc.identifier.citedreferenceWard RA: Blood flow rate: an important determinant of urea clearance and delivered Kt/V. Adv Ren Replace Ther 6: 75 – 79, 1999en_US
dc.identifier.citedreferenceHauk M, Kuhlmann MK, Riegel W, Kohler H: In vivo effects of dialysate flow rate on Kt/V in maintenance hemodialysis patients. Am J Kidney Dis 35: 105 – 111, 2000en_US
dc.identifier.citedreferenceBhimani JP, Ouseph R, Ward RA: Effect of increasing dialysate flow rate on diffusive mass transfer of urea, phosphate and beta2‐microglobulin during clinical haemodialysis. Nephrol Dial Transplant 25: 3990 – 3995, 2010en_US
dc.identifier.citedreferenceDavenport A, Will EJ, Davison AM: Effect of the direction of dialysate flow on the efficiency of continuous arteriovenous haemodialysis. Blood Purif 8: 329 – 336, 1990en_US
dc.identifier.citedreferenceRelton S, Greenberg A, Palevsky PM: Dialysate and blood flow dependence of diffusive solute clearance during CVVHD. ASAIO J 38: M691 – M696, 1992en_US
dc.identifier.citedreferenceBrunet S, Leblanc M, Geadah D, Parent D, Courteau S, Cardinal J: Diffusive and convective solute clearances during continuous renal replacement therapy at various dialysate and ultrafiltration flow rates. Am J Kidney Dis 34: 486 – 492, 1999en_US
dc.identifier.citedreferenceGong D, Ji D, Xie H, Xu B, Liu Y, Li L: The effects of dialysate and ultrafiltration flow rate on solute clearance during continuous renal replacement therapy. Zhonghua Nei Ke Za Zhi 40: 183 – 186, 2001en_US
dc.identifier.citedreferenceChurchwell MD, Pasko DA, Smoyer WE, Mueller BA: Enhanced clearance of highly protein‐bound drugs by albumin‐supplemented dialysate during modeled continuous hemodialysis. Nephrol Dial Transplant 24: 231 – 238, 2009en_US
dc.identifier.citedreferenceBonnardeaux A, Pichette V, Ouimet D, Geadah D, Habel F, Cardinal J: Solute clearances with high dialysate flow rates and glucose absorption from the dialysate in continuous arteriovenous hemodialysis. Am J Kidney Dis 19: 31 – 38, 1992en_US
dc.identifier.citedreferenceWilson FP, Bachhuber MA, Caroff D, Adler R, Fish D, Berns J: Low cefepime concentrations during high blood and dialysate flow continuous venovenous hemodialysis. Antimicrob Agents Chemother 56: 2178 – 2180, 2012en_US
dc.identifier.citedreferenceMeyer TW, Leeper EC, Bartlett DW, Depner TA, Lit YZ, Robertson CR, Hostetter TH: Increasing dialysate flow and dialyzer mass transfer area coefficient to increase the clearance of protein‐bound solutes. J Am Soc Nephrol 15: 1927 – 1935, 2004en_US
dc.identifier.citedreferenceLuo FJ, Patel KP, Marquez IO, Plummer NS, Hostetter TH, Meyer TW: Effect of increasing dialyzer mass transfer area coefficient and dialysate flow on clearance of protein‐bound solutes: a pilot crossover trial. Am J Kidney Dis 53: 1042 – 1049, 2009en_US
dc.identifier.citedreferenceFranssen EJ, van Essen GG, Portman AT, de Jong J, Go G, Stegeman CA, Uges DR: Valproic acid toxicokinetics: serial hemodialysis and hemoperfusion. Ther Drug Monit 21: 289 – 292, 1999en_US
dc.identifier.citedreferenceLanese DM, Alfrey PS, Molitoris BA: Markedly increased clearance of vancomycin during hemodialysis using polysulfone dialyzers. Kidney Int 35: 1409 – 1412, 1989en_US
dc.identifier.citedreferenceBosl R, Shideman JR, Meyer RM, Buselmeier TJ, von Hartitzsch B, Kjellstrand CM: Effects and complications of high efficiency dialysis. Nephron 15: 151 – 160, 1975en_US
dc.identifier.citedreferenceVoiculescu A, Hefter H, Falck M, Kutkuhn B, Grabensee B: Hemodialysis in severe lithium intoxication [German]. Intensivmed Notfallmed 32: 433 – 437, 1995en_US
dc.identifier.citedreferenceLee CS, Peterson JC, Marbury TC: Comparative pharmacokinetics of theophylline in peritoneal dialysis and hemodialysis. J Clin Pharmacol 23: 274 – 280, 1983en_US
dc.identifier.citedreferencePond SM: Extracorporeal techniques in the treatment of poisoned patients. Med J Aust 154: 617 – 622, 1991en_US
dc.identifier.citedreferenceHolubek WJ, Hoffman RS, Goldfarb DS, Nelson LS: Use of hemodialysis and hemoperfusion in poisoned patients. Kidney Int 74: 1327 – 1334, 2008en_US
dc.identifier.citedreferenceFertel BS, Nelson LS, Goldfarb DS: Extracorporeal removal techniques for the poisoned patient: a review for the intensivist. J Intensive Care Med 25: 139 – 148, 2010en_US
dc.identifier.citedreferenceManley HJ, Bridwell DL, Elwell RJ, Bailie GR: Influence of peritoneal dialysate flow rate on the pharmacokinetics of cefazolin. Perit Dial Int 23: 469 – 474, 2003en_US
dc.identifier.citedreferenceUllian ME, Parker H, Sibbald LD, Peabody AM, Schattner P, Jensen JF: Effect of increasing dialysate flow rates on adequacy of peritoneal dialysis. Perit Dial Int 20: 571 – 574, 2000en_US
dc.identifier.citedreferenceRubin J, Adair C, Barnes T, Bower J: Dialysate flow rate and peritoneal clearance. Am J Kidney Dis 4: 260 – 267, 1984en_US
dc.identifier.citedreferenceRobson M, Oreopoulos DG, Izatt S, Ogilvie R, Rapoport A, deVeber GA: Influence of exchange volume and dialysate flow rate on solute clearance in peritoneal dialysis. Kidney Int 14: 486 – 490, 1978en_US
dc.identifier.citedreferenceFreida P, Issad B: Continuous flow peritoneal dialysis: assessment of fluid and solute removal in a high‐flow model of “fresh dialysate single pass”. Perit Dial Int 23: 348 – 355, 2003en_US
dc.identifier.citedreferenceRonco C, Dell'Aquila R, Bonello M, Gloukhoff A, Amerling R, Cruz C, Levin N: Continuous flow peritoneal dialysis: a new double lumen catheter. Int J Artif Organs 26: 984 – 990, 2003en_US
dc.identifier.citedreferenceSzepietowski T, Weyde W, Stefanska‐Bac E: Methanol elimination in peritoneal dialysis [Polish]. Pol Tyg Lek 30 ( 22 ): 933 – 935, 1975en_US
dc.identifier.citedreferenceKan G, Jenkins I, Rangan G, Woodroffe A, Rhodes H, Joyce D: Continuous haemodiafiltration compared with intermittent haemodialysis in the treatment of methanol poisoning. Nephrol Dial Transplant 18: 2665 – 2667, 2003en_US
dc.identifier.citedreferenceBrandes JC, Packard WJ, Watters SK, Fritsche C: Optimization of dialysate flow and mass transfer during automated peritoneal dialysis. Am J Kidney Dis 25: 603 – 610, 1995en_US
dc.identifier.citedreferenceAasarod K, Wideroe TE, Flakne SC: A comparison of solute clearance and ultrafiltration volume in peritoneal dialysis with total or fractional (50%) intraperitoneal volume exchange with the same dialysate flow rate. Nephrol Dial Transplant 12: 2128 – 2132, 1997en_US
dc.identifier.citedreferenceEloot S, de Vos JY, de Vos F, Hombrouckx R, Verdonck P: Middle molecule removal in low‐flux polysulfone dialyzers: impact of flows and surface area on whole‐body and dialyzer clearances. Hemodial Int 9: 399 – 408, 2005en_US
dc.identifier.citedreferenceLeypoldt JK, Cheung AK: Removal of high‐molecular‐weight solutes during high‐efficiency and high‐flux haemodialysis. Nephrol Dial Transplant 11: 329 – 335, 1996en_US
dc.identifier.citedreferenceTrerotola SO, Shah H, Johnson M, Namyslowski J, Moresco K, Patel N, Kraus M, Gassensmith C, Ambrosius WT: Randomized comparison of high‐flow versus conventional hemodialysis catheters. J Vasc Interv Radiol 10: 1032 – 1038, 1999en_US
dc.identifier.citedreferenceSzabo J, Locking‐Cusolito H: The impact of increased blood flow rates on recirculation in central venous hemodialysis catheters. Nephrol Nurs J 28: 639 – 641, 2001en_US
dc.identifier.citedreferencePannu N, Jhangri GS, Tonelli M: Optimizing dialysis delivery in tunneled dialysis catheters. ASAIO J 52: 157 – 162, 2006en_US
dc.identifier.citedreferenceWizemann V, Kulz M, Techert F, Nederlof B: Efficacy of haemodiafiltration. Nephrol Dial Transplant 16 ( Suppl 4 ): 27 – 30, 2001en_US
dc.identifier.citedreferenceAzar AT: Increasing dialysate flow rate increases dialyzer urea clearance and dialysis efficiency: an in vivo study. Saudi J Kidney Dis Transpl 20: 1023 – 1029, 2009en_US
dc.identifier.citedreferenceWolter K, Claus M, Wagner K, Fritschka E: Teicoplanin pharmacokinetics and dosage recommendations in chronic hemodialysis patients and in patients undergoing continuous veno‐venous hemodialysis. Clin Nephrol 42: 389 – 397, 1994en_US
dc.identifier.citedreferenceEknoyan G, Beck GJ, Cheung AK, Daugirdas JT, Greene T, Kusek JW, Allon M, Bailey J, Delmez JA, Depner TA, Dwyer JT, Levey AS, Levin NW, Milford E, Ornt DB, Rocco MV, Schulman G, Schwab SJ, Teehan BP, Toto R; Hemodialysis Study G: Effect of dialysis dose and membrane flux in maintenance hemodialysis. N Engl J Med 347: 2010 – 2019, 2002en_US
dc.identifier.citedreferenceMatzke GR: Status of hemodialysis of drugs in 2002. J Pharm Pract 15: 405 – 418, 2002en_US
dc.identifier.citedreferenceSchuerer DJ, Brophy PD, Maxvold NJ, Kudelka T, Bunchman TE: High‐efficiency dialysis for carbamazepine overdose. J Toxicol Clin Toxicol 38: 321 – 323, 2000en_US
dc.identifier.citedreferenceLesaffer G, De Smet R, Lameire N, Dhondt A, Duym P, Vanholder R: Intradialytic removal of protein‐bound uraemic toxins: role of solute characteristics and of dialyser membrane. Nephrol Dial Transplant 15: 50 – 57, 2000en_US
dc.identifier.citedreferencePowers KM, Wilkowski MJ, Helmandollar AW, Koenig KG, Bolton WK: Improved urea reduction ratio and Kt/V in large hemodialysis patients using two dialyzers in parallel. Am J Kidney Dis 35: 266 – 274, 2000en_US
dc.identifier.citedreferenceFritz BA, Doss S, McCann LM, Wrone EM: A comparison of dual dialyzers in parallel and series to improve urea clearance in large hemodialysis patients. Am J Kidney Dis 41: 1008 – 1015, 2003en_US
dc.identifier.citedreferencePanzer U, Kluge S, Kreymann G, Wolf G: Combination of intermittent haemodialysis and high‐volume continuous haemofiltration for the treatment of severe metformin‐induced lactic acidosis. Nephrol Dial Transplant 19: 2157 – 2158, 2004en_US
dc.identifier.citedreferenceFriesecke S, Abel P, Kraft M, Gerner A, Runge S: Combined renal replacement therapy for severe metformin‐induced lactic acidosis. Nephrol Dial Transplant 21: 2038 – 2039, 2006en_US
dc.identifier.citedreferenceOuseph R, Hutchison CA, Ward RA: Differences in solute removal by two high‐flux membranes of nominally similar synthetic polymers. Nephrol Dial Transplant 23: 1704 – 1712, 2008en_US
dc.identifier.citedreferenceMaduell F, Navarro V, Cruz MC, Torregrosa E, Garcia D, Simon V, Ferrero JA: Osteocalcin and myoglobin removal in on‐line hemodiafiltration versus low‐ and high‐flux hemodialysis. Am J Kidney Dis 40: 582 – 589, 2002en_US
dc.identifier.citedreferenceSen S, Ratnaraj N, Davies NA, Mookerjee RP, Cooper CE, Patsalos PN, Williams R, Jalan R: Treatment of phenytoin toxicity by the molecular adsorbents recirculating system (MARS). Epilepsia 44: 265 – 267, 2003en_US
dc.identifier.citedreferenceAskenazi DJ, Goldstein SL, Chang IF, Elenberg E, Feig DI: Management of a severe carbamazepine overdose using albumin‐enhanced continuous venovenous hemodialysis. Pediatrics 113: 406 – 409, 2004en_US
dc.identifier.citedreferencePeszynski P, Klammt S, Peters E, Mitzner S, Stange J, Schmidt R: Albumin dialysis: single pass vs. recirculation (MARS). Liver 22 ( Suppl 2 ): 40 – 42, 2002en_US
dc.identifier.citedreferenceDrexler K, Baustian C, Richter G, Ludwig J, Ramlow W, Mitzner S: Albumin dialysis molecular adsorbents recirculating system: impact of dialysate albumin concentration on detoxification efficacy. Ther Apher Dial 13: 393 – 398, 2009en_US
dc.identifier.citedreferenceKrisper P, Stadlbauer V, Stauber RE: Clearing of toxic substances: are there differences between the available liver support devices? Liver Int 31 ( Suppl 3 ): 5 – 8, 2011en_US
dc.identifier.citedreferenceWard RA: Protein‐leaking membranes for hemodialysis: a new class of membranes in search of an application? J Am Soc Nephrol 16: 2421 – 2430, 2005en_US
dc.identifier.citedreferenceWard RA, Schmidt B, Hullin J, Hillebrand GF, Samtleben W: A comparison of on‐line hemodiafiltration and high‐flux hemodialysis: a prospective clinical study. J Am Soc Nephrol 11: 2344 – 2350, 2000en_US
dc.identifier.citedreferenceBammens B, Evenepoel P, Verbeke K, Vanrenterghem Y: Removal of the protein‐bound solute p‐cresol by convective transport: a randomized crossover study. Am J Kidney Dis 44: 278 – 285, 2004en_US
dc.identifier.citedreferenceTroyanov S, Cardinal J, Geadah D, Parent D, Courteau S, Caron S, Leblanc M: Solute clearances during continuous venovenous haemofiltration at various ultrafiltration flow rates using Multiflow‐100 and HF1000 filters. Nephrol Dial Transplant 18: 961 – 966, 2003en_US
dc.identifier.citedreferenceGong X: Evaluation of Hemperfusion in early treatment of acute organophosphoris pesticide poisoning. Acta Acad Med Nantong 24 ( 2 ): 201 – 202, 2004en_US
dc.identifier.citedreferenceYamashita AC: Mechanisms of solute and fluid removal in hemodiafiltration. Contrib Nephrol 158: 50 – 56, 2007en_US
dc.identifier.citedreferenceAhrenholz PG, Winkler RE, Michelsen A, Lang DA, Bowry SK: Dialysis membrane‐dependent removal of middle molecules during hemodiafiltration: the beta2‐microglobulin/albumin relationship. Clin Nephrol 62: 21 – 28, 2004en_US
dc.identifier.citedreferenceMaduell F, del Pozo C, Garcia H, Sanchez L, Hdez‐Jaras J, Albero MD, Calvo C, Torregrosa I, Navarro V: Change from conventional haemodiafiltration to on‐line haemodiafiltration. Nephrol Dial Transplant 14: 1202 – 1207, 1999en_US
dc.identifier.citedreferencePanich A, Tiranathanagul K, Praditpornsilpa K, Eiam‐Ong S: The effectiveness of on‐line hemodiafiltration on beta‐2 microglobulin clearance in end stage renal disease. J Med Assoc Thai 89 ( Suppl 2 ): S1 – S8, 2006en_US
dc.identifier.citedreferenceChurchwell MD, Pasko DA, Mueller BA: Daptomycin clearance during modeled continuous renal replacement therapy. Blood Purif 24: 548 – 554, 2006en_US
dc.identifier.citedreferenceLau AH, Kronfol NO: Effect of continuous hemofiltration on phenytoin elimination. Ther Drug Monit 16: 53 – 57, 1994en_US
dc.identifier.citedreferencePenne EL, van der Weerd NC, Bots ML, van den Dorpel MA, Grooteman MP, Levesque R, Nube MJ, Ter Wee PM, Blankestijn PJ; investigators C: Patient‐ and treatment‐related determinants of convective volume in post‐dilution haemodiafiltration in clinical practice. Nephrol Dial Transplant 24: 3493 – 3499, 2009en_US
dc.identifier.citedreferenceGashti CN, Rodby RA, Huang Z, Gao D, Zhang W: Effects of high blood flow and high pre‐dilution replacement fluid rates on small solute clearances in hemofiltration. Blood Purif 32: 266 – 270, 2011en_US
dc.identifier.citedreferenceAltieri P, Sorba G, Bolasco P, Asproni E, Ledebo I, Cossu M, Ferrara R, Ganadu M, Cadinu F, Serra G, Cabiddu G, Sau G, Casu D, Passaghe M, Bolasco F, Pistis R, Ghisu T; Second Sardinian Multicentre S: Predilution haemofiltration–the Second Sardinian Multicentre Study: comparisons between haemofiltration and haemodialysis during identical Kt/V and session times in a long‐term cross‐over study. Nephrol Dial Transplant 16: 1207 – 1213, 2001en_US
dc.identifier.citedreferenceColussi G, Frattini G: Quantitative analysis of convective dose in hemofiltration and hemodiafiltration: “predilution” vs. “postdilution” reinfusion. Hemodial Int 11: 76 – 85, 2007en_US
dc.identifier.citedreferenceTattersall JE, Ward RA; Group E: Online haemodiafiltration: definition, dose quantification and safety revisited. Nephrol Dial Transplant 28: 542 – 550, 2013en_US
dc.identifier.citedreferenceClark WR, Ronco C: Determinants of haemodialyser performance and the potential effect on clinical outcome. Nephrol Dial Transplant 16 ( Suppl 5 ): 56 – 60, 2001en_US
dc.identifier.citedreferenceJeffrey RF, Khan AA, Prabhu P, Todd N, Goutcher E, Will EJ, Davison AM: A comparison of molecular clearance rates during continuous hemofiltration and hemodialysis with a novel volumetric continuous renal replacement system. Artif Organs 18: 425 – 428, 1994en_US
dc.identifier.citedreferenceRatanarat R, Brendolan A, Volker G, Bonello M, Salvatori G, Andrikos E, Yavuz A, Crepaldi C, Ronco C: Phosphate kinetics during different dialysis modalities. Blood Purif 23: 83 – 90, 2005en_US
dc.identifier.citedreferencePellicano R, Polkinghorne KR, Kerr PG: Reduction in beta2‐microglobulin with super‐flux versus high‐flux dialysis membranes: results of a 6‐week, randomized, double‐blind, crossover trial. Am J Kidney Dis 52: 93 – 101, 2008en_US
dc.identifier.citedreferenceMartin‐Reyes G, Toledo‐Rojas R, Torres‐de Rueda A, Sola‐Moyano E, Blanca‐Martos L, Fuentes‐Sanchez L, Martinez‐Esteban MD, Diez‐de los Rios MJ, Bailen‐Garcia A, Gonzalez‐Molina M, Garcia‐Gonzalez I: Haemodialysis using high cut‐off dialysers for treating acute renal failure in multiple myeloma. Nefrologia 32: 35 – 43, 2012en_US
dc.identifier.citedreferenceMatzke GR, Frye RF, Joy MS, Palevsky PM: Determinants of ceftriaxone clearance by continuous venovenous hemofiltration and hemodialysis. Pharmacotherapy 20: 635 – 643, 2000en_US
dc.identifier.citedreferenceJoy MS, Matzke GR, Frye RF, Palevsky PM: Determinants of vancomycin clearance by continuous venovenous hemofiltration and continuous venovenous hemodialysis. Am J Kidney Dis 31: 1019 – 1027, 1998en_US
dc.identifier.citedreferenceStevenson JM, Patel JH, Churchwell MD, Vilay AM, Depestel DD, Sorgel F, Kinzig M, Jakob V, Mueller BA: Ertapenem clearance during modeled continuous renal replacement therapy. Int J Artif Organs 31: 1027 – 1034, 2008en_US
dc.identifier.citedreferencePatel JH, Churchwell MD, Seroogy JD, Barriere SL, Grio M, Mueller B: Telavancin and hydroxy propyl‐beta‐cyclodextrin clearance during continuous renal replacement therapy: an in vitro study. Int J Artif Organs 32: 745 – 751, 2009en_US
dc.identifier.citedreferenceChoi G, Gomersall CD, Lipman J, Wong A, Joynt GM, Leung P, Ramsay SJ, Ho OM: The effect of adsorption, filter material and point of dilution on antibiotic elimination by haemofiltration an in vitro study of levofloxacin. Int J Antimicrob Agents 24: 468 – 472, 2004en_US
dc.identifier.citedreferenceDavies JG, Kingswood JC, Sharpstone P, Street MK: Drug removal in continuous haemofiltration and haemodialysis. Br J Hosp Med 54: 524 – 528, 1995en_US
dc.identifier.citedreferenceDe Vriese AS, Colardyn FA, Philippe JJ, Vanholder RC, De Sutter JH, Lameire NH: Cytokine removal during continuous hemofiltration in septic patients. J Am Soc Nephrol 10: 846 – 853, 1999en_US
dc.identifier.citedreferenceKronfol NO, Lau AH, Colon‐Rivera J, Libertin CL: Effect of CAVH membrane types on drug‐sieving coefficients and clearances. ASAIO Trans 32: 85 – 87, 1986en_US
dc.identifier.citedreferenceBirk HW, Kistner A, Wizemann V, Schutterle G: Protein adsorption by artificial membrane materials under filtration conditions. Artif Organs 19: 411 – 415, 1995en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.