Show simple item record

Radiative forcing of organic aerosol in the atmosphere and on snow: Effects of SOA and brown carbon

dc.contributor.authorLin, Guangxingen_US
dc.contributor.authorPenner, Joyce E.en_US
dc.contributor.authorFlanner, Mark G.en_US
dc.contributor.authorSillman, Sanforden_US
dc.contributor.authorXu, Lien_US
dc.contributor.authorZhou, Chengen_US
dc.date.accessioned2014-08-06T16:49:53Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2014-08-06T16:49:53Z
dc.date.issued2014-06-27en_US
dc.identifier.citationLin, Guangxing; Penner, Joyce E.; Flanner, Mark G.; Sillman, Sanford; Xu, Li; Zhou, Cheng (2014). "Radiative forcing of organic aerosol in the atmosphere and on snow: Effects of SOA and brown carbon." Journal of Geophysical Research: Atmospheres 119(12): 7453-7476.en_US
dc.identifier.issn2169-897Xen_US
dc.identifier.issn2169-8996en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108060
dc.description.abstractOrganic aerosols (OA) play an important role in climate change. However, very few calculations of global OA radiative forcing include secondary organic aerosol (SOA) or the light‐absorbing part of OA (brown carbon). Here we use a global model to assess the radiative forcing associated with the change in primary organic aerosol (POA) and SOA between present‐day and preindustrial conditions in both the atmosphere and the land snow/sea ice. Anthropogenic emissions are shown to substantially influence the SOA formation rate, causing it to increase by 29 Tg/yr (93%) since preindustrial times. We examine the effects of varying the refractive indices, size distributions for POA and SOA, and brown carbon fraction in SOA. The increase of SOA exerts a direct forcing ranging from −0.12 to −0.31 W m −2 and a first indirect forcing in warm‐phase clouds ranging from −0.22 to −0.29 W m −2 , with the range due to different assumed SOA size distributions and refractive indices. The increase of POA since preindustrial times causes a direct forcing varying from −0.06 to −0.11 W m −2 , when strongly and weakly absorbing refractive indices for brown carbon are used. The change in the total OA exerts a direct forcing ranging from −0.14 to −0.40 W m −2 . The atmospheric absorption from brown carbon ranges from +0.22 to +0.57 W m −2 , which corresponds to 27%~70% of the black carbon (BC) absorption predicted in the model. The radiative forcing of OA deposited in land snow and sea ice ranges from +0.0011 to +0.0031 W m −2 or as large as 24% of the forcing caused by BC in snow and ice simulated by the model. Key Points A fully explicit SOA formation model is used to determine SOA radiative forcing The direct radiative forcing by brown carbon in SOA is estimated The radiative forcing of OA in snow/ice is estimated for the first timeen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherCambridge Univ. Pressen_US
dc.subject.otherOrganic Aerosolen_US
dc.subject.otherSOAen_US
dc.subject.otherRadiative Forcingen_US
dc.subject.otherBrown Carbonen_US
dc.subject.otherClimate Changeen_US
dc.subject.otherAtmospheric Chemistryen_US
dc.titleRadiative forcing of organic aerosol in the atmosphere and on snow: Effects of SOA and brown carbonen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108060/1/jgrd51450.pdf
dc.identifier.doi10.1002/2013JD021186en_US
dc.identifier.sourceJournal of Geophysical Research: Atmospheresen_US
dc.identifier.citedreferencePaulot, F., J. D. Crounse, H. G. Kjaergaard, A. Kurten, J. M. St Clair, J. H. Seinfeld, and P. O. Wennberg ( 2009 ), Unexpected epoxide formation in the gas‐phase photooxidation of isoprene, Science, 325 ( 5941 ), 730 – 733.en_US
dc.identifier.citedreferenceSaleh, R., C. J. Hennigan, G. R. McMeeking, W. K. Chuang, E. S. Robinson, H. Coe, N. M. Donahue, and A. L. Robinson ( 2013 ), Absorptivity of brown carbon in fresh and photo‐chemically aged biomass‐burning emissions, Atmos. Chem. Phys., 13 ( 15 ), 7683 – 7693, doi: 10.5194/acp‐13‐7683‐2013.en_US
dc.identifier.citedreferenceSareen, N., S. G. Moussa, and V. F. McNeill ( 2013 ), Photochemical aging of light‐absorbing secondary organic aerosol material, J. Phys. Chem. A, 117 ( 14 ), 2987 – 2996.en_US
dc.identifier.citedreferenceSchulz, M., et al. ( 2006 ), Radiative forcing by aerosols as derived from the AeroCom present‐day and pre‐industrial simulations, Atmos. Chem. Phys., 6 ( 12 ), 5225 – 5246, doi: 10.5194/acp‐6‐5225‐2006.en_US
dc.identifier.citedreferenceScott, C. E., et al. ( 2014 ), The direct and indirect radiative effects of biogenic secondary organic aerosol, Atmos. Chem. Phys., 14, 447 – 470, doi: 10.5194/acp‐14‐447‐2014.en_US
dc.identifier.citedreferenceShapiro, E. L., J. Szprengiel, N. Sareen, C. N. Jen, M. R. Giordano, and V. F. McNeill ( 2009 ), Light‐absorbing secondary organic material formed by glyoxal in aqueous aerosol mimics, Atmos. Chem. Phys., 9 ( 7 ), 2289 – 2300, doi: 10.5194/acp‐9‐2289‐2009.en_US
dc.identifier.citedreferenceSmith, S. J., H. Pitcher, and T. M. L. Wigley ( 2001 ), Global and regional anthropogenic sulfur dioxide emissions, Global Planet. Change, 29 ( 1–2 ), 99 – 119, doi: 10.1016/S0921‐8181(00)00057‐6.en_US
dc.identifier.citedreferenceSpracklen, D. V., et al. ( 2011 ), Aerosol mass spectrometer constraint on the global secondary organic aerosol budget, Atmos. Chem. Phys., 11 ( 23 ), 12,109 – 12,136.en_US
dc.identifier.citedreferenceTakemura, T., T. Nozawa, S. Emori, T. Y. Nakajima, and T. Nakajima ( 2005 ), Simulation of climate response to aerosol direct and indirect effects with aerosol transport‐radiation model, J. Geophys. Res., 110, D02202, doi: 10.1029/2004JD005029.en_US
dc.identifier.citedreferenceTrainic, M., A. Abo Riziq, A. Lavi, J. M. Flores, and Y. Rudich ( 2011 ), The optical, physical and chemical properties of the products of glyoxal uptake on ammonium sulfate seed aerosols, Atmos. Chem. Phys., 11 ( 18 ), 9697 – 9707, doi: 10.5194/acp‐11‐9697‐2011.en_US
dc.identifier.citedreferenceTsigaridis, K., M. Krol, F. J. Dentener, Y. Balkanski, J. Lathiere, S. Metzger, D. A. Hauglustaine, and M. Kanakidou ( 2006 ), Change in global aerosol composition since preindustrial times, Atmos. Chem. Phys., 6, 5143 – 5162.en_US
dc.identifier.citedreferenceTurpin, B. J., and H. J. Lim ( 2001 ), Species contributions to PM2. 5 mass concentrations: Revisiting common assumptions for estimating organic mass, Aerosol Sci. Technol., 35, 602 – 610.en_US
dc.identifier.citedreferenceUpdyke, K. M., T. B. Nguyen, and S. A. Nizkorodov ( 2012 ), Formation of brown carbon via reactions of ammonia with secondary organic aerosols from biogenic and anthropogenic precursors, Atmos. Environ., 63, 22 – 31, doi: 10.1016/j.atmosenv.2012.09.012.en_US
dc.identifier.citedreferencevan Aardenne, J. A., F. J. Dentener, J. G. J. Olivier, C. G. M. Klein Goldewijk, and J. Lelieveld ( 2001 ), A 1 × 1 degree resolution dataset of historical anthropogenic trace gas emissions for the period 1890–1990, Global Biogeochem. Cycles, 15, 909 – 928, doi: 10.1029/2000GB001265.en_US
dc.identifier.citedreferenceWang, M. H., and J. E. Penner ( 2009 ), Aerosol indirect forcing in a global model with particle nucleation, Atmos. Chem. Phys., 9 ( 1 ), 239 – 260.en_US
dc.identifier.citedreferenceWang, M. H., J. E. Penner, and X. H. Liu ( 2009 ), Coupled IMPACT aerosol and NCAR CAM3 model: Evaluation of predicted aerosol number and size distribution, J. Geophys. Res., 114, D06302, doi: 10.1029/2008JD010459.en_US
dc.identifier.citedreferenceWang, Y. H., D. J. Jacob, and J. A. Logan ( 1998 ), Global simulation of tropospheric O‐3‐NOx‐hydrocarbon chemistry 1. Model formulation, J. Geophys. Res., 103, 10,713 – 10,725, doi: 10.1029/98JD00158.en_US
dc.identifier.citedreferenceWaxman, E. M., K. Dzepina, B. Ervens, J. Lee‐Taylor, B. Aumont, J. L. Jimenez, S. Madronich, and R. Volkamer ( 2013 ), Secondary organic aerosol formation from semi‐ and intermediate‐volatility organic compounds and glyoxal: Relevance of O/C as a tracer for aqueous multiphase chemistry, Geophys. Res. Lett., 40, 978 – 982, doi: 10.1002/grl.50203.en_US
dc.identifier.citedreferenceWoo, J. L., D. D. Kim, A. N. Schwier, R. Li, and V. F. McNeill ( 2013 ), Aqueous aerosol SOA formation: Impact on aerosol physical properties, Faraday Discuss., 165, 357 – 367.en_US
dc.identifier.citedreferenceYang, M., S. G. Howell, and J. Zhuang ( 2009 ), Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China–interpretations of atmospheric measurements during EAST‐AIRE, Atmos. Chem. Phys., 9, 2035 – 2050, doi: 10.5194/acp‐9‐2035‐2009.en_US
dc.identifier.citedreferenceYoung, P. J., et al. ( 2013 ), Pre‐industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), Atmos. Chem. Phys., 13 ( 4 ), 2063 – 2090, doi: 10.5194/acp‐13‐2063‐2013.en_US
dc.identifier.citedreferenceYun, Y., J. E. Penner, and O. Popovicheva ( 2013 ), The effects of hygroscopicity on ice nucleation of fossil fuel combustion aerosols in mixed‐phase clouds, Atmos. Chem. Phys., 13, 4339 – 4348, doi: 10.5194/acp‐13‐4339‐2013.en_US
dc.identifier.citedreferenceZhang, Q., et al. ( 2007 ), Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically‐influenced Northern Hemisphere midlatitudes, Geophys. Res. Lett., 34, L13801, doi: 10.1029/2007GL029979.en_US
dc.identifier.citedreferenceZhang, S., J. E. Penner, and O. Torres ( 2005 ), Inverse modeling of biomass burning emissions using Total Ozone Mapping Spectrometer aerosol index for 1997, J. Geophys. Res., 110, D21306, doi: 10.1029/2004JD005738.en_US
dc.identifier.citedreferenceZhang, X., Y.‐H. Lin, J. D. Surratt, P. Zotter, A. S. H. Prévôt, and R. J. Weber ( 2011 ), Light‐absorbing soluble organic aerosol in Los Angeles and Atlanta: A contrast in secondary organic aerosol, Geophys. Res. Lett., 38, L21810, doi: 10.1029/2011GL049385.en_US
dc.identifier.citedreferenceZhang, X., Y.‐H. Lin, J. D. Surratt, and R. J. Weber ( 2013 ), Sources, composition and absorption angström exponent of light‐absorbing organic components in aerosol extracts from the Los Angeles Basin, Environ. Sci. Technol., 47 ( 8 ), 3685 – 3693.en_US
dc.identifier.citedreferenceZhong, M., and M. Jang ( 2011 ), Light absorption coefficient measurement of SOA using a UV–Visible spectrometer connected with an integrating sphere, Atmos. Environ., 45, 4263 – 4271.en_US
dc.identifier.citedreferenceAbdul‐Razzak, H., and S. J. Ghan ( 2000 ), A parameterization of aerosol activation 2. Multiple aerosol types, J. Geophys. Res., 105, 6837 – 6844.en_US
dc.identifier.citedreferenceAbdul‐Razzak, H., and S. J. Ghan ( 2002 ), A parameterization of aerosol activation ‐ 3. Sectional representation, J. Geophys. Res., 107 ( D3 ), 4026, doi: 10.1029/2001JD000483.en_US
dc.identifier.citedreferenceAckerman, A. S., O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E. J. Welton ( 2000 ), Reduction of tropical cloudiness by soot, Science, 288, 1042 – 1047.en_US
dc.identifier.citedreferenceAndreae, M. O., and A. Gelencsér ( 2006 ), Black carbon or brown carbon? The nature of light‐absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131 – 3148.en_US
dc.identifier.citedreferenceAndres, R. J., and A. D. Kasgnoc ( 1998 ), A time‐averaged inventory of subaerial volcanic sulfur emissions, J. Geophys. Res., 103, 25,251 – 25,261, doi: 10.1029/98JD02091.en_US
dc.identifier.citedreferenceArola, A., G. Schuster, and G. Myhre ( 2011 ), Inferring absorbing organic carbon content from AERONET data, Atmos. Chem. Phys., 11, 215 – 225, doi: 10.5194/acp‐11‐215‐2011.en_US
dc.identifier.citedreferenceBahadur, R., P. S. Praveen, Y. Xu, and V. Ramanathan ( 2012 ), Solar absorption by elemental and brown carbon determined from spectral observations, Proc. Natl. Acad. Sci. U. S. A., 109 ( 43 ), 17,366 – 17,371.en_US
dc.identifier.citedreferenceBey, I., D. J. Jacob, R. M. Yantosca, J. A. Logan, B. D. Field, A. M. Fiore, Q. B. Li, H. G. Y. Liu, L. J. Mickley, and M. G. Schultz ( 2001 ), Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res., 106, 23,073 – 23,095, doi: 10.1029/2001JD000807.en_US
dc.identifier.citedreferenceBond, T. C. ( 2001 ), Spectral dependence of visible light absorption by carbonaceous particles emitted from coal combustion, Geophys. Res. Lett., 28, 4075 – 4078, doi: 10.1029/2001GL013652.en_US
dc.identifier.citedreferenceBond, T. C., and R. W. Bergstrom ( 2006 ), Light absorption by carbonaceous particles: An investigative review, Aerosol Sci. Technol., 40 ( 1 ), 27 – 67.en_US
dc.identifier.citedreferenceBond, T. C., M. Bussemer, B. Wehner, S. Keller, R. J. Charlson, and J. Heintzenberg ( 1999 ), Light Absorption by Primary Particle Emissions from a Lignite Burning Plant, Environ. Sci. Technol., 33 ( 21 ), 3887 – 3891, doi: 10.1021/es9810538.en_US
dc.identifier.citedreferenceBond, T. C., et al. ( 2013 ), Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res. Atmos., 118, 5380 – 5552, doi: 10.1002/jgrd.50171.en_US
dc.identifier.citedreferenceBones, D. L., D. K. Henricksen, S. A. Mang, M. Gonsior, A. P. Bateman, T. B. Nguyen, W. J. Cooper, and S. A. Nizkorodov ( 2010 ), Appearance of strong absorbers and fluorophores in limonene‐O 3 secondary organic aerosol due to NH 4 + ‐mediated chemical aging over long time scales, J. Geophys. Res., 115, D05203, doi: 10.1029/2009JD012864.en_US
dc.identifier.citedreferenceCappa, C. D., D. L. Che, S. H. Kessler, J. H. Kroll, and K. R. Wilson ( 2011 ), Variations in organic aerosol optical and hygroscopic properties upon heterogeneous OH oxidation, J. Geophys. Res., 116, D15204, doi: 10.1029/2011JD015918.en_US
dc.identifier.citedreferenceChakrabarty, R. K., H. Moosmüller, L. W. A. Chen, K. Lewis, W. P. Arnott, C. Mazzoleni, M. K. Dubey, C. E. Wold, W. M. Hao, and S. M. Kreidenweis ( 2010 ), Brown carbon in tar balls from smoldering biomass combustion, Atmos. Chem. Phys., 10 ( 13 ), 6363 – 6370, doi: 10.5194/acp‐10‐6363‐2010.en_US
dc.identifier.citedreferenceChang, J. L., and J. E. Thompson ( 2010 ), Characterization of colored products formed during irradiation of aqueous solutions containing H2O2 and phenolic compounds, Atmos. Environ., 44 ( 4 ), 541 – 551.en_US
dc.identifier.citedreferenceChen, Y., and T. C. Bond ( 2010 ), Light absorption by organic carbon from wood combustion, Atmos. Chem. Phys., 10, 1773 – 1787, doi: 10.5194/acp‐10‐1773‐2010.en_US
dc.identifier.citedreferenceChung, C. E., V. Ramanathan, and D. Decremer ( 2012 ), Observationally constrained estimates of carbonaceous aerosol radiative forcing, Proc. Natl. Acad. Sci. U.S.A., 109 ( 29 ), 11,624 – 11,629.en_US
dc.identifier.citedreferenceChung, S. H., and J. H. Seinfeld ( 2002 ), Global distribution and climate forcing of carbonaceous aerosols, J. Geophys. Res., 107 ( D19 ), 4407, doi: 10.1029/2001JD001397.en_US
dc.identifier.citedreferenceCollins, W. D., P. J. Rasch, B. A. Boville, J. J. Hack, J. R. McCaa, D. L. Williamson, B. P. Briegleb, C. M. Bitz, S. J. Lin, and M. H. Zhang ( 2006 ), The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3), J. Clim., 19 ( 11 ), 2144 – 2161.en_US
dc.identifier.citedreferenceCoy, L., and R. Swinbank ( 1997 ), Characteristics of stratospheric winds and temperatures produced by data assimilation, J. Geophys. Res., 102, 25,763 – 25,781, doi: 10.1029/97JD02361.en_US
dc.identifier.citedreferenceDeguillaume, L., K. V. Desboeufs, M. Leriche, Y. Long, and N. Chaumerliac ( 2010 ), Effect of iron dissolution on cloud chemistry: From laboratory measurements to model results, Atmos. Pollut. Res., 1 ( 4 ), 220 – 228.en_US
dc.identifier.citedreferenceDinar, E., A. Abo Riziq, C. Spindler, C. Erlick, G. Kiss, and Y. Rudich ( 2007 ), The complex refractive index of atmospheric and model humic‐like substances (HULIS) retrieved by a cavity ring down aerosol spectrometer (CRD‐AS), Faraday Discuss., 137, 279 – 295, doi: 10.1039/b703111d.en_US
dc.identifier.citedreferenceDoherty, S. J., S. G. Warren, T. C. Grenfell, A. D. Clarke, and R. E. Brandt ( 2010 ), Light‐absorbing impurities in Arctic snow, Atmos. Chem. Phys., 10 ( 23 ), 11,647 – 11,680.en_US
dc.identifier.citedreferenceFeng, Y., V. Ramanathan, and V. R. Kotamarthi ( 2013 ), Brown carbon: A significant atmospheric absorber of solar radiation?, Atmos. Chem. Phys., 13 ( 17 ), 8607 – 8621, doi: 10.5194/acp‐13‐8607‐2013.en_US
dc.identifier.citedreferenceFlanner, M. G., C. S. Zender, J. T. Randerson, and P. J. Rasch ( 2007 ), Present‐day climate forcing and response from black carbon in snow, J. Geophys. Res., 112, D11202, doi: 10.1029/2006JD008003.en_US
dc.identifier.citedreferenceFlanner, M. G., C. S. Zender, P. G. Hess, N. M. Mahowald, T. H. Painter, V. Ramanathan, and P. J. Rasch ( 2009 ), Springtime warming and reduced snow cover from carbonaceous particles, Atmos. Chem. Phys., 9 ( 7 ), 2481 – 2497, doi: 10.5194/acp‐9‐2481‐2009.en_US
dc.identifier.citedreferenceForster, P., et al. ( 2007 ), Changes in atmospheric constituents and in radiative forcing, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., 996 pp., Cambridge Univ. Press, Cambridge, U. K., and New York.en_US
dc.identifier.citedreferenceFu, T. M., D. J. Jacob, F. Wittrock, J. P. Burrows, M. Vrekoussis, and D. K. Henze ( 2008 ), Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols, J. Geophys. Res., 113, D15303, doi: 10.1029/2007JD009505.en_US
dc.identifier.citedreferenceGalloway, M. M., P. S. Chhabra, A. W. H. Chan, J. D. Surratt, R. C. Flagan, J. H. Seinfeld, and F. N. Keutsch ( 2009 ), Glyoxal uptake on ammonium sulphate seed aerosol: Reaction products and reversibility of uptake under dark and irradiated conditions, Atmos. Chem. Phys., 9 ( 10 ), 3331 – 3345.en_US
dc.identifier.citedreferenceGantt, B., N. Meskhidze, and D. Kamykowski ( 2009 ), A new physically‐based quantification of marine isoprene and primary organic aerosol emissions, Atmos. Chem. Phys., 9 ( 14 ), 4915 – 4927.en_US
dc.identifier.citedreferenceGondwe, M., M. Krol, W. Gieskes, W. Klaassen, and H. de Baar ( 2003 ), The contribution of ocean‐leaving DMS to the global atmospheric burdens of DMS, MSA, SO2, and NSS SO4=, Global Biogeochem. Cycles, 17, doi: 10.1029/2002GB001937.en_US
dc.identifier.citedreferenceGuenther, A., et al. ( 1995 ), A global‐model of natural volatile organic‐compound emissions, J. Geophys. Res., 100, 8873 – 8892, doi: 10.1029/94JD02950.en_US
dc.identifier.citedreferenceHallquist, M., et al. ( 2009 ), The formation, properties and impact of secondary organic aerosol: Current and emerging issues, Atmos. Chem. Phys., 9 ( 14 ), 5155 – 5236.en_US
dc.identifier.citedreferenceHecobian, A., X. Zhang, M. Zheng, and N. Frank ( 2010 ), Water‐Soluble Organic Aerosol material and the light‐absorption characteristics of aqueous extracts measured over the Southeastern United States, Atmos. Chem. Phys., 10 ( 13 ), 5965 – 5977.en_US
dc.identifier.citedreferenceHoffer, A., A. Gelencsér, P. Guyon, and G. Kiss ( 2006 ), Optical properties of humic‐like substances (HULIS) in biomass‐burning aerosols, Atmos. Chem. Phys., 6 ( 11 ), 3563 – 3570.en_US
dc.identifier.citedreferenceHolland, M., D. A. Bailey, B. P. Briegleb, B. Light, and E. Hunke ( 2012 ), Improved sea ice shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on Arctic sea ice, J. Clim., 25, 1413 – 1430, doi: 10.1175/JCLI‐D‐11‐00078.1.en_US
dc.identifier.citedreferenceHoyle, C. R., G. Myhre, T. K. Berntsen, and I. S. A. Isaksen ( 2009 ), Anthropogenic influence on SOA and the resulting radiative forcing, Atmos. Chem. Phys., 9 ( 8 ), 2715 – 2728.en_US
dc.identifier.citedreferenceHunke, E. C., and W. H. Lipscomb ( 2008 ), CICE: The Los Alamos sea ice model, documentation and software, version 4.0, Tech. Rep. LA‐CC‐06‐012, 76 pp., Los Alamos National Laboratory.en_US
dc.identifier.citedreferenceIPCC ( 2013 ), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by T. F. Stocker et al., 1535 pp., Cambridge Univ. Press, Cambridge, U. K., and New York.en_US
dc.identifier.citedreferenceIto, A. ( 2011 ), Mega fire emissions in Siberia: Potential supply of bioavailable iron from forests to the ocean, Biogeosciences, 8, 1679 – 1697, doi: 10.5194/bg‐8‐1679‐2011.en_US
dc.identifier.citedreferenceIto, A., and J. E. Penner ( 2005 ), Historical emissions of carbonaceous aerosols from biomass and fossil fuel burning for the period 1870–2000, Global Biogeochem. Cycles, 19, GB2028, doi: 10.1029/2004GB002374.en_US
dc.identifier.citedreferenceIto, A., S. Sillman, and J. E. Penner ( 2007 ), Effects of additional nonmethane volatile organic compounds, organic nitrates, and direct emissions of oxygenated organic species on global tropospheric chemistry, J. Geophys. Res., 112, D06309, doi: 10.1029/2005JD006556.en_US
dc.identifier.citedreferenceJacobson, M. Z. ( 1999 ), Isolating nitrated and aromatic aerosols and nitrated aromatic gases as sources of ultraviolet light absorption, J. Geophys. Res., 104, 3527 – 3542, doi: 10.1029/1998JD100054.en_US
dc.identifier.citedreferenceJacobson, M. Z. ( 2001 ), Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols, J. Geophys. Res., 106, 1551 – 1568, doi: 10.1029/2000JD900514.en_US
dc.identifier.citedreferenceJacobson, M. Z. ( 2012 ), Investigating cloud absorption effects: Global absorption properties of black carbon, tar balls, and soil dust in clouds and aerosols, J. Geophys. Res., 117, D06205, doi: 10.1029/2011JD017218.en_US
dc.identifier.citedreferenceJaoui, M., E. O. Edney, T. E. Kleindienst, M. Lewandowski, J. H. Offenberg, J. D. Surratt, and J. H. Seinfeld ( 2008 ), Formation of secondary organic aerosol from irradiated α ‐pinene/toluene/NOx mixtures and the effect of isoprene and sulfur dioxide, J. Geophys. Res., 113, D09303, doi: 10.1029/2007JD009426.en_US
dc.identifier.citedreferenceJiao, C., et al. ( 2014 ), An AeroCom assessment of black carbon in Arctic snow and sea ice, Atmos. Chem. Phys., 14, 2399 – 2417, doi: 10.5194/acp‐14‐2399‐2014.en_US
dc.identifier.citedreferenceJimenez, J. L., et al. ( 2009 ), Evolution of organic aerosols in the atmosphere, Science, 326 ( 5959 ), 1525 – 1529, doi: 10.1126/science.1180353.en_US
dc.identifier.citedreferenceKanakidou, M., K. Tsigaridis, F. J. Dentener, and P. J. Crutzen ( 2000 ), Human‐activity‐enhanced formation of organic aerosols by biogenic hydrocarbon oxidation, J. Geophys. Res., 105, 9243 – 9254, doi: 10.1029/1999JD901148.en_US
dc.identifier.citedreferenceKettle, A. J., and M. O. Andreae ( 2000 ), Flux of dimethylsulfide from the oceans: A comparison of updated data seas and flux models, J. Geophys. Res., 105, 26,793 – 26,808, doi: 10.1029/2000JD900252.en_US
dc.identifier.citedreferenceKim, H., B. Barkey, and S. E. Paulson ( 2012 ), Real refractive indices and formation yields of secondary organic aerosol generated from photooxidation of Limonene and α ‐pinene: The effect of the HC/NOx ratio, J. Phys. Chem. A, 116, 6059 – 6067.en_US
dc.identifier.citedreferenceKirchstetter, T. W., T. Novakov, and P. V. Hobbs ( 2004 ), Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon, J. Geophys. Res., 109, D21208, doi: 10.1029/2004JD004999.en_US
dc.identifier.citedreferenceKirillova, E. N., A. Andersson, J. Han, M. Lee, and Ö. Gustafsson ( 2014 ), Sources and light absorption of water‐soluble organic carbon aerosols in the outflow from northern China, Atmos. Chem. Phys., 14, 1413 – 1422, doi: 10.5194/acp‐14‐1413‐2014.en_US
dc.identifier.citedreferenceLack, D. A., J. M. Langridge, R. Bahreini, C. D. Cappa, A. M. Middlebrook, and J. P. Schwarz ( 2012 ), Brown carbon and internal mixing in biomass burning particles, Proc. Natl. Acad. Sci. U.S.A., 109, 14,802 – 14,807, doi: 10.1073/pnas.1206575109.en_US
dc.identifier.citedreferenceLambe, A. T., et al. ( 2013 ), Relationship between oxidation level and optical properties of secondary organic aerosol, Environ. Sci. Technol., 47, 6349 – 6357, doi: 10.1021/es401043j.en_US
dc.identifier.citedreferenceLawrence, D., et al. ( 2011 ), Parameterization improvements and functional and structural advances in version 4 of the Community Land Model, J. Adv. Model. Earth Syst., 3, M03001, doi: 10.1029/2011MS000045.en_US
dc.identifier.citedreferenceLiao, H., and J. H. Seinfeld ( 2005 ), Global impacts of gas‐phase chemistry‐aerosol interactions on direct radiative forcing by anthropogenic aerosols and ozone, J. Geophys. Res., 110, D18208, doi: 10.1029/2005JD005907.en_US
dc.identifier.citedreferenceLim, H. J., A. G. Carlton, and B. J. Turpin ( 2005 ), Isoprene forms secondary organic aerosol through cloud processing: Model simulations, Environ. Sci. Technol., 39 ( 6 ), 4441 – 4446.en_US
dc.identifier.citedreferenceLimbeck, A., M. Kulmala, and H. Puxbaum ( 2003 ), Secondary organic aerosol formation in the atmosphere via heterogeneous reaction of gaseous isoprene on acidic particles, Geophys. Res. Lett., 30 ( 19 ), 1996, doi: 10.1029/2003GL017738.en_US
dc.identifier.citedreferenceLin, G. ( 2013 ), Global modeling of secondary organic aerosol formation: From atmospheric chemistry to climate, PhD thesis, Univ. of Michigan at Ann Arbor, Ann Arbor.en_US
dc.identifier.citedreferenceLin, G., J. E. Penner, S. Sillman, D. Taraborrelli, and J. Lelieveld ( 2012 ), Global modeling of SOA formation from dicarbonyls, epoxides, organic nitrates and peroxides, Atmos. Chem. Phys., 12, 4743 – 4774, doi: 10.5194/acp‐12‐4743‐2012.en_US
dc.identifier.citedreferenceLin, G., S. Sillman, J. E. Penner, and A. Ito ( 2014 ), Global modeling of SOA: The use of different mechanisms for aqueous phase formation, Atmos. Chem. Phys., 14, 5451 – 5475, doi: 10.5194/acp‐14‐5451‐2014.en_US
dc.identifier.citedreferenceLiu, J., et al. ( 2014 ), Brown carbon in the continental troposphere, Geophys. Res. Lett., 41, 2191 – 2195, doi: 10.1002/2013GL058976.en_US
dc.identifier.citedreferenceLiu, X. H., J. E. Penner, and M. Herzog ( 2005 ), Global modeling of aerosol dynamics: Model description, evaluation, and interactions between sulfate and nonsulfate aerosols, J. Geophys. Res., 110, D18206, doi: 10.1029/2004JD005674.en_US
dc.identifier.citedreferenceLiu, X. H., J. Penner, S. Ghan, and M. Wang ( 2007 ), Inclusion of ice micro‐ physics in the NCAR Community Atmospheric Model Version 3 (CAM3), J. Clim., 20, 4526 – 4547.en_US
dc.identifier.citedreferenceMarley, N. A., et al. ( 2009 ), The impact of biogenic carbon sources on aerosol absorption in Mexico City, Atmos. Chem. Phys., 9 ( 5 ), 1537 – 1549, doi: 10.5194/acp‐9‐1537‐2009.en_US
dc.identifier.citedreferenceMetzger, A., et al. ( 2010 ), Evidence for the role of organics in aerosol particle formation under atmospheric conditions, Proc. Natl. Acad. Sci. U.S.A., 107 ( 15 ), 6646 – 6651.en_US
dc.identifier.citedreferenceMing, Y., V. Ramaswamy, P. A. Ginoux, and L. H. Horowitz ( 2005 ), Direct radiative forcing of anthropogenic organic aerosol, J. Geophys. Res., 110, D20208, doi: 10.1029/2004JD005573.en_US
dc.identifier.citedreferenceMyhre, G., et al. ( 2013 ), Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations, Atmos. Chem. Phys., 13 ( 4 ), 1853 – 1877, doi: 10.5194/acp‐13‐1853‐2013.en_US
dc.identifier.citedreferenceNaik, V., et al. ( 2013 ), Preindustrial to present day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), Atmos. Chem. Phys., 13, 5277 – 5298, doi: 10.5194/acp‐13‐5277‐2013.en_US
dc.identifier.citedreferenceNakayama, T., Y. Matsumi, K. Sato, T. Imamura, A. Yamazaki, and A. Uchiyama ( 2010 ), Laboratory studies on optical properties of secondary organic aerosols generated during the photooxidation of toluene and the ozonolysis of α ‐pinene, J. Geophys. Res., 115, D24204, doi: 10.1029/2010JD014387.en_US
dc.identifier.citedreferenceNakayama, T., K. Sato, Y. Matsumi, T. Imamura, A. Yamazaki, and A. Uchiyama ( 2012 ), Wavelength dependence of refractive index of secondary organic aerosols generated during the ozonolysis and photooxidation of α‐pinene, SOLA, 8, 119 – 123, doi: 10.2151/sola.2012‐030.en_US
dc.identifier.citedreferenceNakayama, T., K. Sato, Y. Matsumi, T. Imamura, A. Yamazaki, and A. Uchiyama ( 2013 ), Wavelength and NO x dependent complex refractive index of SOAs generated from the photooxidation of toluene, Atmos. Chem. Phys., 13 ( 2 ), 531 – 545, doi: 10.5194/acp‐13‐531‐2013.en_US
dc.identifier.citedreferenceOcko, I. B., V. Ramaswamy, and P. Ginoux ( 2012 ), Sensitivity of scattering and absorbing aerosol direct radiative forcing to physical climate factors, J. Geophys. Res., 117, D20203, doi: 10.1029/2012JD018019.en_US
dc.identifier.citedreferenceO'Dowd, C. D., B. Langmann, S. Varghese, C. Scannell, D. Ceburnis, and M. C. Facchini ( 2008 ), A combined organic inorganic sea‐spray source function, Geophys. Res. Lett., 35, L01801, doi: 10.1029/2007GL030331.en_US
dc.identifier.citedreferenceOleson, K. W., et al. ( 2010 ), Technical description of version 4.0 of the Community Land Model, NCAR Tech. Note NCAR/TN‐478+STR, 257 pp.en_US
dc.identifier.citedreferencePeeters, J., T. L. Nguyen, and L. Vereecken ( 2009 ), HOx radical regeneration in the oxidation of isoprene, Phys. Chem. Chem. Phys., 11 ( 28 ), 5935 – 5939.en_US
dc.identifier.citedreferencePenner, J. E., S. Y. Zhang, and C. C. Chuang ( 2003 ), Soot and smoke aerosol may not warm climate, J. Geophys. Res., 108 ( D21 ), 4657, doi: 10.1029/2003JD003409.en_US
dc.identifier.citedreferencePenner, J. E., L. Xu, and M. Wang ( 2011a ), Satellite methods underestimate indirect climate forcing by aerosols, Proc. Natl. Acad. Sci. U.S.A., 108, 13,404 – 13,408.en_US
dc.identifier.citedreferencePenner, J. E., C. Zhou, L. Xu, and M. Wang ( 2011b ), Reply to Quaas et al.: Can satellites be used to estimate indirect climate forcing by aerosols?, Proc. Natl. Acad. Sci. U.S.A., 108, E1100 – E1101, doi: 10.1073/pnas.1116135108.en_US
dc.identifier.citedreferencePrather, M., C. Holmes, and J. Hsu ( 2012 ), Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry, Geophys. Res. Lett., 39, L09803, doi: 10.1029/2012GL051440.en_US
dc.identifier.citedreferenceRotstayn, L. D., and Y. G. Liu ( 2003 ), Sensitivity of the first indirect aerosol effect to an increase of cloud droplet spectral dispersion with droplet number concentration, J. Clim., 16 ( 21 ), 3476 – 3481.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.