Show simple item record

Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests

dc.contributor.authorTalhelm, Alan F.en_US
dc.contributor.authorPregitzer, Kurt S.en_US
dc.contributor.authorKubiske, Mark E.en_US
dc.contributor.authorZak, Donald R.en_US
dc.contributor.authorCampany, Courtney E.en_US
dc.contributor.authorBurton, Andrew J.en_US
dc.contributor.authorDickson, Richard E.en_US
dc.contributor.authorHendrey, George R.en_US
dc.contributor.authorIsebrands, J. G.en_US
dc.contributor.authorLewin, Keith F.en_US
dc.contributor.authorNagy, Johnen_US
dc.contributor.authorKarnosky, David F.en_US
dc.date.accessioned2014-08-06T16:49:54Z
dc.date.availableWITHHELD_13_MONTHSen_US
dc.date.available2014-08-06T16:49:54Z
dc.date.issued2014-08en_US
dc.identifier.citationTalhelm, Alan F.; Pregitzer, Kurt S.; Kubiske, Mark E.; Zak, Donald R.; Campany, Courtney E.; Burton, Andrew J.; Dickson, Richard E.; Hendrey, George R.; Isebrands, J. G.; Lewin, Keith F.; Nagy, John; Karnosky, David F. (2014). "Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests." Global Change Biology 20(8): 2492-2504.en_US
dc.identifier.issn1354-1013en_US
dc.identifier.issn1365-2486en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108065
dc.description.abstractThree young northern temperate forest communities in the north‐central United States were exposed to factorial combinations of elevated carbon dioxide ( CO 2 ) and tropospheric ozone (O 3 ) for 11 years. Here, we report results from an extensive sampling of plant biomass and soil conducted at the conclusion of the experiment that enabled us to estimate ecosystem carbon (C) content and cumulative net primary productivity ( NPP ). Elevated CO 2 enhanced ecosystem C content by 11%, whereas elevated O 3 decreased ecosystem C content by 9%. There was little variation in treatment effects on C content across communities and no meaningful interactions between CO 2 and O 3 . Treatment effects on ecosystem C content resulted primarily from changes in the near‐surface mineral soil and tree C, particularly differences in woody tissues. Excluding the mineral soil, cumulative NPP was a strong predictor of ecosystem C content ( r 2  = 0.96). Elevated CO 2 enhanced cumulative NPP by 39%, a consequence of a 28% increase in canopy nitrogen (N) content (g N m −2 ) and a 28% increase in N productivity ( NPP /canopy N). In contrast, elevated O 3 lowered NPP by 10% because of a 21% decrease in canopy N, but did not impact N productivity. Consequently, as the marginal impact of canopy N on NPP (∆ NPP /∆N) decreased through time with further canopy development, the O 3 effect on NPP dissipated. Within the mineral soil, there was less C in the top 0.1 m of soil under elevated O 3 and less soil C from 0.1 to 0.2 m in depth under elevated CO 2 . Overall, these results suggest that elevated CO 2 may create a sustained increase in NPP , whereas the long‐term effect of elevated O 3 on NPP will be smaller than expected. However, changes in soil C are not well‐understood and limit our ability to predict changes in ecosystem C content.en_US
dc.publisherSAS Institute Inc.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherCarbon Storageen_US
dc.subject.otherElevated Carbon Dioxide ( CO 2 )en_US
dc.subject.otherFree‐Air CO 2 Enrichment ( FACE )en_US
dc.subject.otherNet Primary Productivity ( NPP )en_US
dc.subject.otherNitrogenen_US
dc.subject.otherSoil Carbonen_US
dc.subject.otherCarbon Sequestrationen_US
dc.subject.otherAir Pollutionen_US
dc.titleElevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forestsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108065/1/gcb12564.pdf
dc.identifier.doi10.1111/gcb.12564en_US
dc.identifier.sourceGlobal Change Biologyen_US
dc.identifier.citedreferenceKing JS, Kubiske ME, Pregitzer KS et al. ( 2005 ) Tropospheric O 3 compromises net primary productivity in young stands of trembling aspen, paper birch, and sugar maple in response to elevated atmospheric CO 2. New Phytologist, 168, 623 – 636.en_US
dc.identifier.citedreferenceSmith AR, Lukac M, Hood R, Healey JR, Miglietta F, Godbold DL ( 2013 ) Elevated CO 2 enrichment induces a differential biomass response in a mixed species temperate forest plantation. New Phytologist, 198, 156 – 168.en_US
dc.identifier.citedreferenceTalhelm AF, Pregitzer KS, Zak DR ( 2009 ) Species‐specific responses to atmospheric carbon dioxide and tropospheric ozone mediate changes in soil carbon. Ecology Letters, 12, 1219 – 1228.en_US
dc.identifier.citedreferenceTalhelm AF, Pregitzer KS, Giardina CP ( 2012 ) Long‐term leaf production response to elevated atmospheric carbon dioxide and tropospheric ozone. Ecosystems, 15, 71 – 82.en_US
dc.identifier.citedreferenceUddling J, Teclaw RM, Pregitzer KS, Ellsworth DS ( 2009 ) Leaf and canopy conductance in aspen and aspen‐birch forests under free‐air enrichment with carbon dioxide and ozone. Tree Physiology, 29, 1367 – 1389.en_US
dc.identifier.citedreferenceVanderwel MC, Casperson JP, Woods ME ( 2006 ) Snag dynamics in partially harvested and unmanaged northern hardwood forests. Canadian Journal of Forest Research, 36, 2769 – 2779.en_US
dc.identifier.citedreferenceWittig VE, Ainsworth EA, Naidu SL, Karnosky DF, Long SP ( 2009 ) Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta‐analysis. Global Change Biology, 15, 396 – 424.en_US
dc.identifier.citedreferenceZak DR, Pregitzer KS, Curtis PS, Teeri JA, Fogel R, Randlett DL ( 1993 ) Elevated atmospheric CO 2 and feedback between carbon and nitrogen cycles. Plant and Soil, 151, 105 – 117.en_US
dc.identifier.citedreferenceZak DR, Holmes WE, Pregitzer KS ( 2007 ) Atmospheric CO 2 and O 3 alter the flow of 15 N in developing forest ecosystems. Ecology, 88, 2630 – 2639.en_US
dc.identifier.citedreferenceZak DR, Pregitzer KS, Kubiske ME, Burton AJ ( 2011 ) Forest productivity under elevated CO 2 and O 3: positive feedbacks to soil N cycling sustain decade‐long net primary productivity enhancement by CO 2. Ecology Letters, 14, 1220 – 1226.en_US
dc.identifier.citedreferenceZak DR, Kubiske ME, Pregitzer KS, Burton AJ ( 2012 ) Atmospheric CO 2 and O 3 alter competition for soil nitrogen in developing forests. Global Change Biology, 18, 1480 – 1488.en_US
dc.identifier.citedreferenceBader MKF, Leuzinger S, Keel SG, Siegwolf RT, Hagedorn F, Schleppi P, Körner C ( 2013 ) Central European hardwood trees in a high‐CO 2 future: synthesis of an 8‐year forest canopy CO 2 enrichment project. Journal of Ecology, 101, 1509 – 1519.en_US
dc.identifier.citedreferenceBallantyne AP, Alden CB, Miller JB, Tans PP, White JWC ( 2012 ) Increase in observed net carbon dioxide uptake by lands and oceans during the past 50 years. Nature, 488, 70 – 73.en_US
dc.identifier.citedreferenceBandeff JM, Pregitzer KS, Loya WM, Holmes WE, Zak DR ( 2006 ) Overstory community composition and elevated atmospheric CO 2 and O 3 modify understory biomass production and nitrogen acquisition. Plant and Soil, 282, 251 – 259.en_US
dc.identifier.citedreferenceBinkley D, Campoe OC, Gspaltl M, Forrester DI ( 2013 ) Light absorption and use efficiency in forests: why patterns differ for trees and stands. Forest Ecology and Management, 288, 5 – 13.en_US
dc.identifier.citedreferenceBradley KL, Pregitzer KS ( 2007 ) Ecosystem assembly and terrestrial C balance under elevated CO 2. Trends in Ecology and Evolution, 22, 538 – 547.en_US
dc.identifier.citedreferenceBrown HT, Escombe F ( 1902 ) The influence of varying amounts of carbon dioxide in the air on the photosynthetic process of leaves and on the mode of growth of plants. Proceedings of the Royal Society of London, 70, 397 – 413.en_US
dc.identifier.citedreferenceCurtis PS, Wang X ( 1998 ) A meta‐analysis of elevated CO 2 effects on woody plant mass, form, and physiology. Oecologia, 113, 299 – 313.en_US
dc.identifier.citedreferenceDíaz‐de‐Quijano M, Schaub M, Bassin S, Volk M, Peñuelas J ( 2012 ) Ozone visible symptoms and reduced root biomass in the subalpine species Pinus uncinata after 2 years of free‐air ozone fumigation. Environmental Pollution, 169, 250 – 257.en_US
dc.identifier.citedreferenceDickson RE, Lewin KF, Isebrands JG et al. ( 2000 ) Forest atmosphere carbon transfer storage‐II (FACTS II) ‐ The aspen free‐air CO 2 and O 3 enrichment (FACE) project: an overview. USDA Forest Service North Central Research Station. General Technical Report NC‐214. 68 pp.en_US
dc.identifier.citedreferenceDrake JE, Gallet‐Budynek A, Hofmockel KS et al. ( 2011 ) Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long‐term enhancement of forest productivity under elevated CO 2. Ecology Letters, 14, 349 – 357.en_US
dc.identifier.citedreferenceEdwards IP, Zak DR ( 2011 ) Fungal community composition and function after long‐term exposure of northern forests to elevated atmospheric CO 2 and tropospheric O 3. Global Change Biology, 17, 2184 – 2195.en_US
dc.identifier.citedreferenceEriksson E, Welander P ( 1956 ) On a mathematical model of the carbon cycle in nature. Tellus, 8, 155 – 175.en_US
dc.identifier.citedreferenceFahey TJ, Arthur MA ( 1994 ) Further studies of root decomposition following harvest of a northern hardwoods forest. Forest Science, 40, 618 – 629.en_US
dc.identifier.citedreferenceFahey TJ, Hughes JW, Pu M, Arthur MA ( 1988 ) Root decomposition and nutrient flux following whole‐tree harvest of northern hardwood forest. Forest Science, 34, 744 – 768.en_US
dc.identifier.citedreferenceFelzer B, Reilly J, Melillo J et al. ( 2005 ) Future effects of ozone on carbon sequestration and climate change policy using a global biogeochemical model. Climatic Change, 73, 345 – 373.en_US
dc.identifier.citedreferenceGough CM, Vogel CS, Kazanski C et al. ( 2007 ) Coarse woody debris and the carbon balance of a north temperate forest. Forest Ecology & Management, 244, 60 – 67.en_US
dc.identifier.citedreferenceHamilton JG, De Lucia EH, George K, Naidu SL, Finzi AC, Schlesinger WH ( 2002 ) Forest carbon balance under elevated CO 2. Oecologia, 131, 250 – 260.en_US
dc.identifier.citedreferenceHendrey GR, Ellsworth DS, Lewin KF, Nagy J ( 1999 ) A free‐air enrichment system for exposing tall forest vegetation to elevated atmospheric CO 2. Global Change Biology, 5, 293 – 300.en_US
dc.identifier.citedreferenceHoosbeek MR, Scarascia‐Mugnozza GE ( 2009 ) Increased litter build up and soil organic matter stabilization in a poplar plantation after 6 years of atmospheric CO 2 enrichment (FACE): final results of POP‐EuroFACE compared to other forest FACE experiments. Ecosystems, 12, 220 – 239.en_US
dc.identifier.citedreferenceHoosbeek MR, Lukac M, Velhorst EJ, Smith AR, Godbold DL ( 2011 ) Free atmospheric CO 2 enrichment increased above ground biomass but did not affect symbiotic N 2 ‐fixation and soil carbon dynamics in a mixed deciduous stand in Wales. Biogeosciences, 8, 353 – 364.en_US
dc.identifier.citedreferenceHutchinson GE ( 1948 ) Circular causal systems in ecology. Annals of the New York Academy of Sciences, 50, 221 – 246.en_US
dc.identifier.citedreferenceIversen CM, Keller JK, Garten CT, Norby RJ ( 2012 ) Soil carbon and nitrogen cycling and storage throughout the soil profile in a sweetgum plantation after 11 years of CO 2 ‐enrichment. Global Change Biology, 18, 1684 – 1697.en_US
dc.identifier.citedreferenceJoslin JD, Gaudinski JB, Torn MS, Riley WJ, Hanson PJ ( 2006 ) Fine‐root turnover patterns and their relationship to root diameter and soil depth in a 14 C‐labeled hardwood forest. New Phytologist, 172, 523 – 535.en_US
dc.identifier.citedreferenceKarnosky DF, Zak DR, Pregitzer KS et al. ( 2003 ) Tropospheric O 3 moderates responses of temperate hardwood forests to elevated CO 2: a synthesis of molecular to ecosystem results from the Aspen FACE project. Functional Ecology, 17, 289 – 304.en_US
dc.identifier.citedreferenceKing J, Pregitzer K, Zak D et al. ( 2001 ) Fine‐root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated atmospheric CO 2 and tropospheric O 3. Oecologia, 128, 237 – 250.en_US
dc.identifier.citedreferenceÅgren GI ( 1983 ) Nitrogen productivity of some conifers. Canadian Journal of Forest Research, 13, 494 – 500.en_US
dc.identifier.citedreferenceAinsworth EA, Long SP ( 2005 ) What have we learned from 15 years of free‐air CO 2 enrichment (FACE)? A meta‐analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO 2. New Phytologist, 165, 351 – 372.en_US
dc.identifier.citedreferenceAinsworth EA, Yendrek CR, Sitch S, Collins WJ, Emberson LD ( 2012 ) The effects of tropospheric ozone on net primary productivity and implications for climate change. Annual Review of Plant Biology, 63, 637 – 661.en_US
dc.identifier.citedreferenceAli AA, Medlyn BE, Crous KY, Reich PB ( 2013 ) A trait‐based ecosystem model suggests that long‐term responsiveness to rising atmospheric CO2 concentration is greater in slow‐growing than fast‐growing plants. Functional Ecology, 27, 1011 – 1022.en_US
dc.identifier.citedreferenceKörner C ( 2003 ) Carbon limitation in trees. Journal of Ecology, 91, 4 – 17.en_US
dc.identifier.citedreferenceKörner C ( 2006 ) Plant CO 2 responses: an issue of definition, time and resource supply. New Phytologist, 172, 393 – 411.en_US
dc.identifier.citedreferenceKubiske ME, Quinn VS, Heilman WE et al. ( 2006 ) Interannual climatic variation mediates elevated CO 2 and O 3 effects on forest growth. Global Change Biology, 12, 1054 – 1068.en_US
dc.identifier.citedreferenceKubiske ME, Quinn VS, Marquardt PE, Karnosky DF ( 2007 ) Effects of elevated atmospheric CO 2 and/or O 3 on intra‐ and interspecific competitive ability of aspen. Plant Biology, 9, 342 – 355.en_US
dc.identifier.citedreferenceLamarque J‐F, Kyle GP, Meinshausen M et al. ( 2011 ) Global and regional evolution of short‐lived radiatively‐active gases and aerosols in the Representative Concentration Pathways. Climatic Change, 109, 191 – 212.en_US
dc.identifier.citedreferenceLangley JA, McKinley DC, Wolf AA, Hungate BA, Drake BG, Megonigal JP ( 2009 ) Priming depletes soil carbon and releases nitrogen in a scrub‐oak ecosystem exposed to elevated CO 2. Soil Biology and Biochemistry, 41, 54 – 60.en_US
dc.identifier.citedreferenceLeuzinger S, Hättenschwiler S ( 2013 ) Beyond global change: lessons from 25 years of CO 2 research. Oecologia, 171, 639 – 651.en_US
dc.identifier.citedreferenceLeuzinger S, Luo Y, Beier C, Dieleman W, Vicca S, Körner C ( 2011 ) Do global change experiments overestimate impacts on terrestrial ecosystems? Trends in Ecology & Evolution, 26, 236 – 241.en_US
dc.identifier.citedreferenceLiberloo M, Lukac M, Calfapietra C et al. ( 2009 ) Coppicing shifts CO 2 stimulation of poplar productivity to above‐ground pools: a synthesis of leaf to stand level results from the POP/EUROFACE experiment. New Phytologist, 182, 331 – 346.en_US
dc.identifier.citedreferenceLittell RC, Milliken GC, Stroup WW, Wolfinger RD ( 2006 ) SAS System for Mixed Models ( 2nd edn ). SAS Institute Inc., Cary, NC.en_US
dc.identifier.citedreferenceLuo Y, Su BO, Currie WS et al. ( 2004 ) Progressive nitrogen limitation to ecosystem response to rising atmospheric carbon dioxide. BioScience, 54, 731 – 739.en_US
dc.identifier.citedreferenceMatamala R, Gonzàlez‐Meler MA, Jastrow JD, Norby RJ, Schlesinger WH ( 2003 ) Impacts of fine root turnover on forest NPP and soil C sequestration potential. Science, 302, 1385 – 1387.en_US
dc.identifier.citedreferenceMatyssek R, Wieser G, Ceulemans R et al. ( 2010a ) Enhanced ozone strongly reduces carbon sink strength of adult beech ( Fagus sylvatica )–Resume from the free‐air fumigation study at Kranzberg Forest. Environmental Pollution, 158, 2527 – 2532.en_US
dc.identifier.citedreferenceMatyssek R, Karnosky DF, Wieser G et al. ( 2010b ) Advances in understanding ozone impact on forest trees: messages from novel phytotron and free‐air fumigation studies. Environmental Pollution, 158, 1990 – 2006.en_US
dc.identifier.citedreferenceMcCarthy HR, Oren R, Johnsen KH et al. ( 2010 ) Re‐assessment of plant carbon dynamics at the Duke free‐air CO 2 enrichment site: interactions of atmospheric [CO 2 ] with nitrogen and water availability over stand development. New Phytologist, 185, 514 – 528.en_US
dc.identifier.citedreferenceNabuurs GJ, Masera O, Andrasko K et al. ( 2007 ) Forestry. In: Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA ), pp. 543 – 584. Cambridge University Press, Cambridge, UK and New York, NY, USA.en_US
dc.identifier.citedreferenceNikolova PS, Andersen CP, Blaschke H, Matyssek R, Haberle KH ( 2010 ) Belowground effects of enhanced tropospheric ozone and drought in a beech/spruce forest ( Fagus sylvatica L./ Picea abies [L.] Karst). Environmental Pollution, 158, 1071 – 1078.en_US
dc.identifier.citedreferenceNorby RJ, Zak DR ( 2011 ) Ecological lessons from free‐air CO 2 enrichment (FACE) experiments. Annual Review of Ecology and Evolution and Systematics, 42, 181 – 203.en_US
dc.identifier.citedreferenceNorby RJ, Ledford J, Reilly CD, Miller NE, O'Neill EG ( 2004 ) Fine‐root production dominates response of a deciduous forest to atmospheric CO 2 enrichment. Proceedings of the National Academy of Sciences of the United States of America, 101, 9689 – 9693.en_US
dc.identifier.citedreferenceNorby RJ, Warren JM, Iversen CM, Medlyn BE, Mc Murtrie RE ( 2010 ) CO 2 enhancement of forest productivity constrained by limited nitrogen availability. Proceedings of the National Academy of Sciences of the United States of America, 107, 19368 – 19373.en_US
dc.identifier.citedreferenceOllinger SV, Aber JD, Reich PB ( 1997 ) Simulating ozone effects on forest productivity: interactions among leaf‐, canopy‐, and stand‐level processes. Ecological Applications, 7, 1237 – 1251.en_US
dc.identifier.citedreferencePalacio S, Hoch G, Sala A, Körner C, Millard P ( 2014 ) Does carbon storage limit tree growth? New Phytologist, 201, 1096 – 1100.en_US
dc.identifier.citedreferencePerala DA ( 1977 ) Manager's handbook for aspen in the north‐central States. USDA Forest Service General Technical Report NC‐36, 30 p. North Central Forest Experiment Station, St. Paul, Minnesota.en_US
dc.identifier.citedreferencePhillips RP, Meier IC, Bernhardt ES, Grandy AS, Wickings K, Finzi AC ( 2012 ) Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO 2. Ecology Letters, 15, 1042 – 1049.en_US
dc.identifier.citedreferencePoorter H, Navas ML ( 2003 ) Plant growth and competition at elevated CO 2: on winners, losers and functional groups. New Phytologist, 157, 175 – 198.en_US
dc.identifier.citedreferencePregitzer K, Burton A, King J, Zak D ( 2008 ) Soil respiration, root biomass, and root turnover following long‐term exposure of northern forests to elevated atmospheric CO 2 and tropospheric O 3. New Phytologist, 180, 153 – 161.en_US
dc.identifier.citedreferenceReich PB ( 2012 ) Key canopy traits drive forest productivity. Proceedings of the Royal Society B: Biological Sciences, 279, 2128 – 2134.en_US
dc.identifier.citedreferenceRen W, Tian H, Liu M et al. ( 2007 ) Effects of tropospheric ozone pollution on net primary productivity and carbon storage in terrestrial ecosystems of China. Journal of Geophysical Research: Atmospheres, 112, 1984 – 2012.en_US
dc.identifier.citedreferenceSitch S, Cox PM, Collins WJ, Huntingford C ( 2007 ) Indirect radiative forcing of climate change through ozone effects on the land‐carbon sink. Nature, 448, 791 – 794.en_US
dc.identifier.citedreferenceSmith M‐L, Ollinger SV, Martin ME, Aber JD, Hallett RA, Goodale CL ( 2002 ) Direct estimation of aboveground forest productivity through hyperspectral remote sensing of canopy nitrogen. Ecological Applications, 12, 1286 – 1302.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.