Show simple item record

Exploring the cross correlations and autocorrelations of the ULF indices and incorporating the ULF indices into the systems science of the solar wind‐driven magnetosphere

dc.contributor.authorBorovsky, Joseph E.en_US
dc.contributor.authorDenton, Michael H.en_US
dc.date.accessioned2014-08-06T16:49:55Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2014-08-06T16:49:55Z
dc.date.issued2014-06en_US
dc.identifier.citationBorovsky, Joseph E.; Denton, Michael H. (2014). "Exploring the cross correlations and autocorrelations of the ULF indices and incorporating the ULF indices into the systems science of the solar wind‐driven magnetosphere." Journal of Geophysical Research: Space Physics 119(6): 4307-4334.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108067
dc.description.abstractThe ULF magnetospheric indices S gr , S geo , T gr , and T geo are examined and correlated with solar wind variables, geomagnetic indices, and the multispacecraft‐averaged relativistic‐electron flux F in the magnetosphere. The ULF indices are detrended by subtracting off sine waves with 24 h periods to form S grd , S geod , T grd , and T geod . The detrending improves correlations. Autocorrelation‐function analysis indicates that there are still strong 24 h period nonsinusoidal signals in the indices which should be removed in future. Indications are that the ground‐based indices S grd and T grd are more predictable than the geosynchronous indices S geod and T geod . In the analysis, a difference index ∆ S mag  ≈  S grd − 0.693 S geod is derived: the time integral of ∆ S mag has the highest ULF index correlation with the relativistic‐electron flux F . In systems‐science fashion, canonical correlation analysis (CCA) is used to correlate the relativistic‐electron flux simultaneously with the time integrals of (a) the solar wind velocity, (b) the solar wind number density, (c) the level of geomagnetic activity, (d) the ULF indices, and (e) the type of solar wind plasma (coronal hole versus streamer belt): The time integrals of the solar wind density and the type of plasma have the highest correlations with F . To create a solar wind‐Earth system of variables, the two indices S grd and S geod are combined with seven geomagnetic indices; from this, CCA produces a canonical Earth variable that is matched with a canonical solar wind variable. Very high correlations ( r corr  = 0.926) between the two canonical variables are obtained. Key Points ULF indices contain nonsinusoidal periodic signals in universal time ULF indices are not the strongest correlator with radiation belt electron fluxes ULF indices were integrated into a mathematical system science of magnetosphereen_US
dc.publisherJohn Wileyen_US
dc.subject.otherULF Indexen_US
dc.subject.otherSystems Scienceen_US
dc.subject.otherCanonical Correlation Analysisen_US
dc.subject.otherSolar Wind/Magnetosphere Couplingen_US
dc.titleExploring the cross correlations and autocorrelations of the ULF indices and incorporating the ULF indices into the systems science of the solar wind‐driven magnetosphereen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108067/1/jgra51050.pdf
dc.identifier.doi10.1002/2014JA019876en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceOnsager, T. G., G. Rostoker, H.‐J. Kim, G. D. Reeves, T. Obara, H. J. Singer, and C. Smithtro ( 2002 ), Radiation belt electron flux dropouts: Local time, radial, and particle‐energy dependence, J. Geophys. Res., 107 ( A11 ), 1382, doi: 10.1029/2001JA000187.en_US
dc.identifier.citedreferenceRostoker, G., S. Skone, and D. N. Baker ( 1998 ), On the origin of relativistic electrons in the magnetosphere associated with some geomagnetic storms, Geophys. Res. Lett., 25, 3701 – 3704, doi: 10.1029/98GL02801.en_US
dc.identifier.citedreferenceSckopke, N. ( 1966 ), A general relation between the energy of trapped particles and the disturbance field near the earth, J. Geophys. Res., 71, 3125 – 3130, doi: 10.1029/JZ071i013p03125.en_US
dc.identifier.citedreferenceSinger, H. J., C. T. Russell, M. G. Kivelson, E. W. Greenstadt, and J. V. Olsen ( 1977 ), Evidence for the control of Pc 3,4 magnetic pulsations by the solar‐wind velocity, Geophys. Res. Lett., 4, 377 – 379, doi: 10.1029/GL004i009p00377.en_US
dc.identifier.citedreferenceSinger, H. J., L. Matheson, R. Grubb, A. Newman, and S. D. Bouwer ( 1996 ), Monitoring space weather with the GOES magnetometers, SPIE Proc., 2812, 299.en_US
dc.identifier.citedreferenceSingh, A. K., S. Mishra, and R. Singh ( 2013 ), ULF wave index as magnetospheric and space‐weather parameters, Adv. Space Res., 52, 1427.en_US
dc.identifier.citedreferenceSiscoe, G., and D. Intriligator ( 1993 ), Three views of two giant streams: Aligned observations at 1 AU, 4.6 AU, and 5.9 AU, Geophys. Res. Lett., 20, 2267 – 2270, doi: 10.1029/93GL02488.en_US
dc.identifier.citedreferenceSmith, J. P., M. F. Thomsen, J. E. Borovsky, and M. Collier ( 1999 ), Solar wind density as a driver for the ring current in mild storms, Geophys. Res. Lett., 26, 1797 – 1800, doi: 10.1029/1999GL900341.en_US
dc.identifier.citedreferenceSrivastava, N., W. D. Gonzalez, and H. S. Sawant ( 1997 ), On the association of eruptive prominences, coronal holes, and current sheets with the coronal mass ejections, Adv. Space Res., 20, 2355.en_US
dc.identifier.citedreferenceTakahashi, K., and A. Y. Ukhorskiy ( 2008 ), Timing analysis of the relationship between solar wind parameters and geosynchronous Pc5 amplitude, J. Geophys. Res., 113, A12204, doi: 10.1029/2008JA013327.en_US
dc.identifier.citedreferenceTennekes, H., and J. L. Lumley ( 1972 ), A First Course in Turbulence, MIT Press, Cambridge, Mass.en_US
dc.identifier.citedreferenceThomsen, M. F. ( 2004 ), Why Kp is such a good measure of magnetospheric convection, Space Weather, 2, S11044, doi: 10.1029/2004SW000089.en_US
dc.identifier.citedreferenceTzelgov, J., and A. Henik ( 1991 ), Suppression situations in psychological research: Definitions, implications, and applications, Psychol. Bull., 109, 524.en_US
dc.identifier.citedreferenceValdivia, J. A., J. Rogan, V. Munoz, B. A. Toledo, and M. Stepanova ( 2013 ), The magnetosphere as a complex system, Adv. Space Sci., 51, 1934.en_US
dc.identifier.citedreferenceVassiliadis, D. ( 2006 ), Systems theory for geospace plasma dynamics, Rev. Geophys., 44, RG2002, doi: 10.1029/2004RG000161.en_US
dc.identifier.citedreferenceVassiliadis, D., A. J. Klimas, S. G. Kanekal, D. N. Baker, and R. S. Weigel ( 2002 ), Long‐term‐average, solar cycle, and seasonal response of magnetospheric energetic electrons to the solar wind speed, J. Geophys. Res., 107 ( A11 ), 1383, doi: 10.1029/2001JA000506.en_US
dc.identifier.citedreferenceViall, N. M., L. Kepko, and H. E. Spence ( 2009 ), Relative occurrence rates and connection of discrete frequency oscillations in the solar wind density and dayside magnetosphere, Geophys. Res. Lett., 114, A01201, doi: 10.1029/2008JA013334.en_US
dc.identifier.citedreferencevon Steiger, R., N. A. Schwadron, L. A. Fisk, J. Geiss, G. Gloeckler, S. Hefti, B. Wilken, R. F. Wimmer‐Schweingruber, and T. H. Zurbuchen ( 2000 ), Composition of quasi‐stationary solar wind flows from Ulysses/Solar Wind Ion Composition Spectrometer, J. Geophys. Res., 105, 27,217 – 27,238, doi: 10.1029/1999JA000358.en_US
dc.identifier.citedreferenceZhao, L., T. H. Zurbuchen, and L. A. Fisk ( 2009 ), Global distribution of the solar wind during solar cycle 23: ACE observations, Geophys. Res. Lett., 36, L14104, doi: 10.1029/2009GL039181.en_US
dc.identifier.citedreferenceZurbuchen, T. H., L. A. Fisk, G. Gloeckler, and R. von Steiger ( 2002 ), The solar wind composition throughout the solar cycle: A continuum of dynamic states, Geophys. Res. Lett., 29 ( 9 ), 1352, doi: 10.1029/2001GL013946.en_US
dc.identifier.citedreferenceBaker, D. N., R. L. McPherron, T. E. Cayton, and R. W. Klebesadel ( 1990 ), Linear prediction filter analysis of relativistic electron properties at 6.6 R E, J. Geophys. Res., 95, 15,133 – 15,140, doi: 10.1029/JA095iA09p15133.en_US
dc.identifier.citedreferenceBaker, D. N., S. G. Kanekal, T. I. Pulkkinen, and J. B. Blake ( 1999 ), Equinoctial and solstitial averages of magnetospheric relativistic electrons: A strong semiannual modulation, Geophys. Res. Lett., 26, 3193 – 3196, doi: 10.1029/1999GL003638.en_US
dc.identifier.citedreferenceBalikhin, M. A., R. J. Boynton, S. N. Walker, J. E. Borovsky, S. A. Billings, and H. L. Wei ( 2011 ), Using the NARMAX approach to model the evolution of energetic electrons fluxes at geostationary orbit, Geophys. Res. Lett., 38, L18105, doi: 10.1029/2011GL048980.en_US
dc.identifier.citedreferenceBelian, R. D. ( 1999 ), Personnel involved with the Synchronous Orbit Particle Analyzer (SOPA) and description of the Charged Particle Analyzer (CPA) detectors, Los Alamos National Laboratory Report LA‐UR‐99‐2832, Los Alamos, N. M.en_US
dc.identifier.citedreferenceBelian, R. D., T. E. Cayton, R. A. Christensen, J. C. Ingraham, M. M. Meier, G. D. Reeves, and A. J. Lazarus ( 1996 ), Relativistic electrons in the outer‐zone: An 11 year cycle; their relation to the solar wind, AIP Conf. Proc., 383, 13.en_US
dc.identifier.citedreferenceBendat, J. S., and A. G. Piersol ( 1971 ), Random Data: Analysis and Measurement Procedures, Sect. 4.8.1, John Wiley, New York.en_US
dc.identifier.citedreferenceBevington, P. R., and D. K. Robinson ( 1992 ), Data Reduction and Error Analysis for the Physical Sciences, 2nd ed., McGraw‐Hill, New York.en_US
dc.identifier.citedreferenceBeyer, W. H. (Ed.) ( 1966 ), Handbook of Tables for Probability and Statistics, Sect. IX, Chem. Rubber, Cleveland, Ohio.en_US
dc.identifier.citedreferenceBorovsky, J. E. ( 2008 ), The rudiments of a theory of solar‐wind/magnetosphere coupling derived from first principles, J. Geophys. Res., 113, A08228, doi: 10.1029/2007JA012646.en_US
dc.identifier.citedreferenceBorovsky, J. E. ( 2013a ), Physics based solar‐wind driver functions for the magnetosphere: Combining the reconnection‐coupled MHD generator with the viscous interaction, J. Geophys. Res. Space Physics, 118, 7119 – 7150, doi: 10.1002/jgra.50557.en_US
dc.identifier.citedreferenceBorovsky, J. E. ( 2013b ), Physical improvements to the solar wind reconnection control function for the Earth's magnetosphere, J. Geophys. Res. Space Physics, 118, 2113 – 2121, doi: 10.1002/jgra.50110.en_US
dc.identifier.citedreferenceBorovsky, J. E., and J. Birn ( 2014 ), The solar wind electric field does not control the dayside reconnection rate, J. Geophys. Res. Space Physics, 119, 751 – 760, doi: 10.1002/2013JA019193.en_US
dc.identifier.citedreferenceBorovsky, J. E., and M. H. Denton ( 2006 ), The differences between CME‐driven storms and CIR‐driven storms, J. Geophys. Res., 111, A07S08, doi: 10.1029/2005JA011447.en_US
dc.identifier.citedreferenceBorovsky, J. E., and M. H. Denton ( 2009a ), Relativistic‐electron dropouts and recovery: A superposed‐epoch study of the magnetosphere and the solar wind, J. Geophys. Res., 114, A02201, doi: 10.1029/2008JA013128.en_US
dc.identifier.citedreferenceBorovsky, J. E., and M. H. Denton ( 2009b ), Electron loss rates from the outer electron radiation belt caused by the filling of the outer plasmasphere: The calm before the storm, J. Geophys. Res., 114, A11203, doi: 10.1029/2009JA014063.en_US
dc.identifier.citedreferenceBorovsky, J. E., and M. H. Denton ( 2010a ), The magnetic field at geosynchronous orbit during high‐speed‐stream‐driven storms: Connections to the solar wind, the plasma sheet, and the outer electron radiation belt, J. Geophys. Res., 115, A08217, doi: 10.1029/2009JA015116.en_US
dc.identifier.citedreferenceBorovsky, J. E., and M. H. Denton ( 2010b ), On the heating of the outer radiation belt to produce high fluxes of relativistic electrons: Measured heating rates for high‐speed‐stream‐driven storms, J. Geophys. Res., 115, A12206, doi: 10.1029/2010JA015342.en_US
dc.identifier.citedreferenceBorovsky, J. E., and M. H. Denton ( 2010c ), Solar‐wind turbulence and shear: A superposed‐epoch analysis of corotating interaction regions at 1 AU, J. Geophys. Res., 115, A10101, doi: 10.1029/2009JA014966.en_US
dc.identifier.citedreferenceBorovsky, J. E., and M. H. Denton ( 2011 ), Evolution of the magnetotail energetic‐electron population during high‐speed‐stream‐driven storms: Evidence for the leakage of the outer electron radiation belt into the Earth's magnetotail, J. Geophys. Res., 116, A12228, doi: 10.1029/2011JA016713.en_US
dc.identifier.citedreferenceBorovsky, J. E., and M. H. Denton ( 2013 ), The differences between storms driven by helmet‐streamer CIRs and storms driven by pseudostreamer CIRs, J. Geophys. Res. Space Physics, 118, 5506 – 5521, doi: 10.1002/jgra.50524.en_US
dc.identifier.citedreferenceBorovsky, J. E., and H. O. Funsten ( 2003 ), Role of solar wind turbulence in the coupling of the solar wind to the Earth's magnetosphere, J. Geophys. Res., 108 ( A6 ), 1246, doi: 10.1029/2002JA009601.en_US
dc.identifier.citedreferenceBorovsky, J. E., and J. T. Steinberg ( 2006 ), The “calm before the storm” in CIR/magnetosphere interactions: Occurrence statistics, solar‐wind statistics, and magnetospheric preconditioning, J. Geophys. Res., 111, A07S10, doi: 10.1029/2005JA011397.en_US
dc.identifier.citedreferenceBorovsky, J. E., M. F. Thomsen, D. J. McComas, T. E. Cayton, and D. J. Knipp ( 1998 ), Magnetospheric dynamics and mass flow during the November 1993 storm, J. Geophys. Res., 103, 26,373 – 26,394, doi: 10.1029/97JA03051.en_US
dc.identifier.citedreferenceKozyreva, O., V. Pilipenko, M. J. Engebretson, K. Yumoto, J. Watermann, and N. Romanova ( 2007 ), In search of a new ULF wave index: Comparison of Pc5 power with dynamics of geostationary relativistic electrons, Planet. Space Sci., 55, 755.en_US
dc.identifier.citedreferenceBoynton, R. J., M. A. Balikhin, S. A. Billings, G. D. Reeves, N. Ganushkina, M. Gadalin, O. A. Amariutei, J. E. Borovsky, and S. N. Walker ( 2013 ), The analysis of electron fluxes at geosynchronous orbit employing a NARMAX approach, J. Geophys. Res. Space Physics, 118, 1500 – 1513, doi: 10.1002/jgra.50192.en_US
dc.identifier.citedreferenceBuhler, P., and L. Desorgher ( 2002 ), Relativistic electron enhancement, magnetic storms, and substorm activity, J. Atmos. Sol. Terr. Phys., 64, 593 – 599.en_US
dc.identifier.citedreferenceBurlaga, L. F., W. H. Mish, and Y. C. Whang ( 1990 ), Coalescence of recurrent streams of different sizes and amplitudes, J. Geophys. Res., 95, 4247 – 4255, doi: 10.1029/JA095iA04p04247.en_US
dc.identifier.citedreferenceCayton, T. E., and R. D. Belian ( 2007 ), Numerical modeling of the synchronous orbit particle analyzer, Los Alamos National Laboratory Report LA‐14335.en_US
dc.identifier.citedreferenceCayton, T. E., R. D. Belian, S. P. Gary, T. A. Fritz, and D. N. Baker ( 1989 ), Energetic electron components at geosynchronous orbit, Geophys. Res. Lett., 16, 147 – 150, doi: 10.1029/GL016i002p00147.en_US
dc.identifier.citedreferenceConger, A. J. ( 1974 ), A revised definition for suppressor variables: A guide to their identification and interpretation, Educ. Psychol. Meas., 34, 35.en_US
dc.identifier.citedreferenceCrooker, N. U., E. M. Appleton, N. A. Schwadron, and M. J. Owens ( 2010 ), Suprathermal electron flux peaks at stream interfaces: Signature of solar wind dynamics or tracer for open magnetic flux transport on the Sun?, J. Geophys. Res., 115, A11101, doi: 10.1029/2010JA015496.en_US
dc.identifier.citedreferenceDegeling, A. W., R. Rankin, and S. R. Elkington ( 2011 ), Convective and diffusive ULF wave driven radiation belt electron transport, J. Geophys. Res., 116, A12217, doi: 10.1029/2011JA016896.en_US
dc.identifier.citedreferenceDenton, M. H., J. E. Borovsky, and T. E. Cayton ( 2010 ), A temperature and density description of relativistic electrons in the outer radiation belt during geomagnetic storms, J. Geophys. Res., 115, A01208, doi: 10.1029/2009JA014183.en_US
dc.identifier.citedreferenceDesorgher, L., P. Buhler, A. Zehnder, E. Daly, and L. Adams ( 1998 ), Outer radiation belt variations during 1995, Adv. Space Res., 22, 83.en_US
dc.identifier.citedreferenceDessler, A. J., and E. N. Parker ( 1959 ), Hydromagnetic theory of geomagnetic storms, J. Geophys. Res., 64, 2239 – 2252, doi: 10.1029/JZ064i012p02239.en_US
dc.identifier.citedreferenceElkington, S. R., M. K. Hudson, and A. A. Chan ( 2003 ), Resonant acceleration and diffusion of outer zone electrons in an asymmetric geomagnetic field, J. Geophys. Res., 108 ( A3 ), 1116, doi: 10.1029/2001JA009202.en_US
dc.identifier.citedreferenceForsyth, R. J., and E. Marsch ( 1999 ), Solar origin and interplanetary evolution of stream interfaces, Space Sci. Rev., 89, 7.en_US
dc.identifier.citedreferenceFoullon, C., et al. ( 2011 ), Plasmoid releases in the heliospheric current sheet and associated coronal hole boundary layer evolution, Astrophys. J., 737, 1.en_US
dc.identifier.citedreferenceFrank, K. A. ( 2000 ), Impact of confounding variable on a regression coefficient, Sociol. Methods Res., 29 ( 2 ), 147 – 194.en_US
dc.identifier.citedreferenceFreeman, J. W. ( 1964 ), The morphology of the electron distribution in the outer radiation zone and near the magnetospheric boundary as observed by Explorer 12, J. Geophys. Res., 69, 1691 – 1723, doi: 10.1029/JZ069i009p01691.en_US
dc.identifier.citedreferenceFriedel, R. H. W., G. D. Reeves, and T. Obara ( 2002 ), Relativistic electron dynamics in the inner magnetosphere—A review, J. Atmos. Sol. Terr. Phys., 64, 265.en_US
dc.identifier.citedreferenceFung, S. F., and L. C. Tan ( 1998 ), Time correlation of low‐altitude relativistic trapped electron fluxes with solar wind speeds, Geophys. Res. Lett., 25, 2361 – 2364, doi: 10.1029/98GL01717.en_US
dc.identifier.citedreferenceGatignon, H. ( 2010 ), Statistical Analysis of Management Data, Springer, New York.en_US
dc.identifier.citedreferenceGeiss, J., G. Gloeckler, and R. von Steiger ( 1995 ), Origin of solar wind from composition data, Space Sci. Rev., 72, 49.en_US
dc.identifier.citedreferenceGloeckler, G., et al. ( 1998 ), Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft, Space Sci. Rev., 86, 497.en_US
dc.identifier.citedreferenceGosling, J. T., and V. J. Pizzo ( 1999 ), Formation and evolution of corotating interaction regions and their three dimensional structure, Space Sci. Rev., 89, 21.en_US
dc.identifier.citedreferenceGosling, J. T., J. R. Asbridge, S. J. Bame, and W. C. Feldman ( 1978 ), Solar wind stream interfaces, J. Geophys. Res., 83, 1401 – 1412, doi: 10.1029/JA083iA04p01401.en_US
dc.identifier.citedreferenceGussenhoven, M. S., D. A. Hardy, and N. Heinemann ( 1983 ), Systematics of the equatorward diffuse auroral boundary, J. Geophys. Res., 88, 5692, doi: 10.1029/JA088iA07p05692.en_US
dc.identifier.citedreferenceHair, J. F., W. C. Black, B. J. Babin, and R. E. Anderson ( 2010 ), Canonical Correlation: A Supplement to Multivariate Data Analysis, Pearson Prentice Hall Publishing, Upper Saddle River, N. J.en_US
dc.identifier.citedreferenceHolzer, R. E., and J. A. Slavin ( 1982 ), An evaluation of three predictors of geomagnetic activity, J. Geophys. Res., 87, 2558 – 2562, doi: 10.1029/JA087iA04p02558.en_US
dc.identifier.citedreferenceJohnson, R. A., and D. W. Wichern ( 2007 ), Applied Multivariate Statistical Analysis, 6th ed., Pearson Prentice Hall, Upper Saddle River, N. J.en_US
dc.identifier.citedreferenceKing, J. H., and N. E. Papitashvili ( 2005 ), Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data, J. Geophys. Res., 110, A02104, doi: 10.1029/2004JA010649.en_US
dc.identifier.citedreferenceLam, H.‐L. ( 2004 ), On the prediction of relativistic electron fluence based on its relationship with geomagnetic activity over a solar cycle, J. Atmos. Sol. Terr. Phys., 66, 1703.en_US
dc.identifier.citedreferenceLam, M. M., R. B. Horne, N. P. Meredith, and S. A. Glauert ( 2009 ), Radiation belt electron flux variability during three CIR‐driven geomagnetic storms, J. Atmos. Sol. Terr. Phys., 71, 1145.en_US
dc.identifier.citedreferenceLandi, E., R. L. Alexander, J. R. Gruesbeck, J. A. Gilbert, S. T. Lepri, W. B. Manchester, and T. H. Zurbuchen ( 2012 ), Carbon ionization stages as a diagnostic of the solar wind, Astrophys. J., 744, 100.en_US
dc.identifier.citedreferenceLazarus, A., J. Kasper, A. Szabo, and K. Ogilvie ( 2003 ), Solar wind streams and their origins, AIP Proc., 679, 187.en_US
dc.identifier.citedreferenceLiemohn, M. W., J. U. Kozyra, M. F. Thomsen, J. L. Roeder, G. Lu, J. E. Borovsky, and T. E. Cayton ( 2001 ), Dominant role of the asymmetric ring current in producing the stormtime Dst *, J. Geophys. Res., 106, 10,883 – 10,904, doi: 10.1029/2000JA000326.en_US
dc.identifier.citedreferenceMacKinnon, D. P., J. L. Krull, and C. M. Lockwood ( 2000 ), Equivalence of the mediation, confounding, and suppression effect, Prev. Sci., 1, 173.en_US
dc.identifier.citedreferenceMathie, R. A., and I. R. Mann ( 2000 ), A correlation between extended intervals of ULF wave power and storm‐time geosynchronous relativistic electron flux enhancements, Geophys. Res. Lett., 27, 3621 – 3264, doi: 10.1029/2000GL003822.en_US
dc.identifier.citedreferenceMathie, R. A., and I. R. Mann ( 2001 ), On the solar wind control of Pc5 ULF pulsation power at mid‐latitudes: Implications for MeV electron acceleration in the outer radiation belt, J. Geophys. Res., 106, 29,783 – 29,796, doi: 10.1029/2001JA000002.en_US
dc.identifier.citedreferenceMcComas, D. J., S. J. Blame, P. Barker, W. C. Feldman, J. L. Phillips, P. Riley, and J. W. Griffee ( 1998 ), Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the Advanced Composition Explorer, Space Sci. Rev., 86, 563.en_US
dc.identifier.citedreferenceMcPherron, R. L., D. N. Baker, and L. F. Bargatze ( 1986 ), Linear filters as a method of real time prediction of geomagnetic activity, in Solar Wind‐Magnetosphere Coupling, edited by Y. Kamide and J. A. Slavin, 85 pp., Terra Scientific, Tokyo, Japan.en_US
dc.identifier.citedreferenceMcPherron, R. L., D. N. Baker, and N. U. Crooker ( 2009 ), Role of the Russell‐McPherron effect in the acceleration of relativistic electrons, J. Atmos. Sol. Terr. Phys., 71, 1032.en_US
dc.identifier.citedreferenceMendoza, B., and R. Perez‐Enriquez ( 1993 ), Association of coronal mass ejections with the heliomagnetic current sheet, J. Geophys. Res., 98, 9365 – 9370, doi: 10.1029/92JA02897.en_US
dc.identifier.citedreferenceMenk, F. W., T. K. Yeoman, D. M. Wright, M. Lester, and F. Honary ( 2003 ), High‐latitude observations of impulse‐driven ULF pulsations in the ionosphere and on the ground, Ann. Geophys., 21, 559.en_US
dc.identifier.citedreferenceMeredith, N. P., R. B. Horne, H. H. A. Iles, R. M. Thorne, D. Heynderickx, and R. R. Anderson ( 2002 ), Outer zone relativistic electron acceleration associated with substorm‐enhanced whistler mode chorus, J. Geophys. Res., 107 ( A7 ), 1144, doi: 10.1029/2001JA900146.en_US
dc.identifier.citedreferenceMeredith, N. P., R. B. Horne, S. A. Glaurt, R. M. Thorne, D. Summers, J. M. Albert, and R. R. Anderson ( 2006 ), Energetic outer zone electron loss timescales during low geomagnetic activity, J. Geophys. Res., 111, A05212, doi: 10.1029/2005JA011516.en_US
dc.identifier.citedreferenceMuller, K. E. ( 1982 ), Understanding canonical correlation through the general linear model and principal components, Am. Stat., 36, 342.en_US
dc.identifier.citedreferenceNagai, T. ( 1988 ), “Space weather forecast” prediction of relativistic electron intensity at synchronous orbit, Geophys. Res. Lett., 15, 425 – 428, doi: 10.1029/GL015i005p00425.en_US
dc.identifier.citedreferenceNakamura, R., J. B. Blake, S. R. Elkington, D. N. Baker, W. Baumjohann, and B. Klecker ( 2002 ), Relationship between ULF waves and radiation belt electrons during the March 10, 1998, Storm, Adv. Space Res., 30, 2163.en_US
dc.identifier.citedreferenceNewell, P. T., T. Sotirelis, K. Liou, C.‐I. Meng, and F. J. Rich ( 2007 ), A nearly universal solar wind‐magnetosphere coupling function inferred from 10 magnetospheric state variables, J. Geophys. Res., 112, A01206, doi: 10.1029/2006JA012015.en_US
dc.identifier.citedreferenceNimon, K., R. K. Henson, and M. S. Gates ( 2010 ), Revisiting interpretation of canonical correlation analysis: A tutorial and demonstration of canonical commonality analysis, Multivar. Behav. Res., 45, 702.en_US
dc.identifier.citedreferenceObara, T., T. Nagatsuma, M. Den, E. Sagawa, and T. G. Onsager ( 2000 ), Effects of the IMF and substorms on the rapid enhancement of relativistic electron in the outer radiation belt during storm recovery phase, Adv. Space Res., 26, 89.en_US
dc.identifier.citedreferenceOnsager, T. G., J. C. Green, G. D. Reeves, and H. J. Singer ( 2007 ), Solar wind and magnetospheric conditions leading to the abrupt loss of outer radiation belt electrons, J. Geophys. Res., 112, A01202, doi: 10.1029/2006JA011708.en_US
dc.identifier.citedreferencePagel, A. C., N. U. Crooker, T. H. Zurbuchen, and J. T. Gosling ( 2004 ), Correlation of solar wind entropy and oxygen ion charge state ratio, J. Geophys. Res., 109, A01113, doi: 10.1029/2003JA010010.en_US
dc.identifier.citedreferencePahud, D. M., I. J. Rae, I. R. Mann, K. R. Murphy, and V. Amalraj ( 2009 ), Ground‐based Pc5 ULF wave power: Solar wind speed and MLT dependence, J. Atmos. Sol. Terr. Phys., 71, 1082.en_US
dc.identifier.citedreferencePaulikas, G. A., and J. B. Blake ( 1979 ), Effects of the solar wind on magnetospheric dynamics: Energetic electrons at the synchronous orbit, in Quantitative Modeling of Magnetospheric Processes, edited by W. P. Olson, 180 pp., AGU, Washington, D. C.en_US
dc.identifier.citedreferenceReeves, G. D., S. K. Morley, R. H. W. Friedel, M. G. Henderson, T. E. Cayton, G. Cunningham, J. B. Blake, R. A. Christensen, and D. Thomsen ( 2011 ), On the relationship between relativistic electron flux and solar wind velocity: Paulikas and Blake revisited, J. Geophys. Res., 116, A02213, doi: 10.1029/2010JA015735.en_US
dc.identifier.citedreferenceRobins, J. ( 1989 ), The control of confounding by intermediate variables, Stat. Med., 8, 679 – 701.en_US
dc.identifier.citedreferenceRomanova, N., and V. Pilipenko ( 2009 ), ULF wave indices to characterize the solar wind‐magnetosphere interaction and relativistic electron dynamics, Acta Geophys., 57, 158.en_US
dc.identifier.citedreferenceRomanova, N., V. Plipenko, N. Crosby, and O. Khabarova ( 2007 ), ULF wave index and its possible applications in space physics, Bulg. J. Phys., 34, 136.en_US
dc.identifier.citedreferenceRostoker, G., H.‐L. Lam, and W. D. Hume ( 1972 ), Response time of the magnetosphere to the interplanetary electric field, Can. J. Phys., 50, 544.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.