Show simple item record

The rock abrasion record at Gale Crater: Mars Science Laboratory results from Bradbury Landing to Rocknest

dc.contributor.authorBridges, N. T.en_US
dc.contributor.authorCalef, F. J.en_US
dc.contributor.authorHallet, B.en_US
dc.contributor.authorHerkenhoff, K. E.en_US
dc.contributor.authorLanza, N. L.en_US
dc.contributor.authorLe Mouélic, S.en_US
dc.contributor.authorNewman, C. E.en_US
dc.contributor.authorBlaney, D. L.en_US
dc.contributor.authorPablo, M. A.en_US
dc.contributor.authorKocurek, G. A.en_US
dc.contributor.authorLangevin, Y.en_US
dc.contributor.authorLewis, K. W.en_US
dc.contributor.authorMangold, N.en_US
dc.contributor.authorMaurice, S.en_US
dc.contributor.authorMeslin, P.‐y.en_US
dc.contributor.authorPinet, P.en_US
dc.contributor.authorRenno, N. O.en_US
dc.contributor.authorRice, M. S.en_US
dc.contributor.authorRichardson, M. E.en_US
dc.contributor.authorSautter, V.en_US
dc.contributor.authorSletten, R. S.en_US
dc.contributor.authorWiens, R. C.en_US
dc.contributor.authorYingst, R. A.en_US
dc.date.accessioned2014-08-06T16:50:01Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2014-08-06T16:50:01Z
dc.date.issued2014-06en_US
dc.identifier.citationBridges, N. T.; Calef, F. J.; Hallet, B.; Herkenhoff, K. E.; Lanza, N. L.; Le Mouélic, S. ; Newman, C. E.; Blaney, D. L.; Pablo, M. A.; Kocurek, G. A.; Langevin, Y.; Lewis, K. W.; Mangold, N.; Maurice, S.; Meslin, P.‐y. ; Pinet, P.; Renno, N. O.; Rice, M. S.; Richardson, M. E.; Sautter, V.; Sletten, R. S.; Wiens, R. C.; Yingst, R. A. (2014). "The rock abrasion record at Gale Crater: Mars Science Laboratory results from Bradbury Landing to Rocknest." Journal of Geophysical Research: Planets 119(6): 1374-1389.en_US
dc.identifier.issn2169-9097en_US
dc.identifier.issn2169-9100en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108086
dc.description.abstractVentifacts, rocks abraded by wind‐borne particles, are found in Gale Crater, Mars. In the eastward drive from “Bradbury Landing” to “Rocknest,” they account for about half of the float and outcrop seen by Curiosity's cameras. Many are faceted and exhibit abrasion textures found at a range of scales, from submillimeter lineations to centimeter‐scale facets, scallops, flutes, and grooves. The drive path geometry in the first 100 sols of the mission emphasized the identification of abrasion facets and textures formed by westerly flow. This upwind direction is inconsistent with predictions based on models and the orientation of regional dunes, suggesting that these ventifact features formed from very rare high‐speed winds. The absence of active sand and evidence for deflation in the area indicates that most of the ventifacts are fossil features experiencing little abrasion today. Key Points Ventifacts in Gale Crater May be formed by paleowind Can see abrasion textures at range of scalesen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherBelhaven Pressen_US
dc.subject.otherGale Crateren_US
dc.subject.otherVentifactsen_US
dc.subject.otherAbrasionen_US
dc.subject.otherWinden_US
dc.subject.otherMarsen_US
dc.subject.otherMSLen_US
dc.titleThe rock abrasion record at Gale Crater: Mars Science Laboratory results from Bradbury Landing to Rocknesten_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108086/1/jgre20264.pdf
dc.identifier.doi10.1002/2013JE004579en_US
dc.identifier.sourceJournal of Geophysical Research: Planetsen_US
dc.identifier.citedreferenceMaurice, S., et al. ( 2012 ), The ChemCam instrument suite the Mars Science Laboratory (MSL) Rover: Science objectives and Mast Unit Description, Space Sci. Rev., 170, 95 – 166, doi: 10.1007/s11214‐012‐9912‐2.en_US
dc.identifier.citedreferenceKnight, J. ( 2008 ), The environmental significance of ventifacts: A critical review, Earth Sci. Rev., 86, 89 – 105.en_US
dc.identifier.citedreferenceKocurek, G., N. Bridges, K. S. Edgett, W. Goetz, K. W. Lewis, M. B. Madsen, D. M. Rubin, R. J. Sullivan, and the MSL Science Team ( 2013 ), Rocknest sand shadow at the Curiosity field site: Morphology, origin, and stabilization, Lunar Planet. Sci., XLIV, 1375.en_US
dc.identifier.citedreferenceKok, J. F., E. J. R. Parteli, T. I. Michaels, and D. Bou Karam ( 2012 ), The physics of wind‐blown sand and dust, Rep. Prog. Phys., 75, 106,901.en_US
dc.identifier.citedreferenceKraft, M. D., and R. Greeley ( 2000 ), Rock coatings and aeolian abrasion on Mars: Application to the Pathfinder landing site, J. Geophys. Res., 105, 15,107 – 15,116, doi: 10.1029/1999JE001229.en_US
dc.identifier.citedreferenceLaity, J. E. ( 1987 ), Topographic effects on ventifact development, Mojave Desert, California, Phys. Geogr., 8, 113 – 132.en_US
dc.identifier.citedreferenceLaity, J. E. ( 1994 ), Landforms of aeolian erosion, in Geomorphology of Desert Environments, edited by A. D. Abrahams and A. J. Parsons, pp. 506 – 535, Chapman and Hall, London.en_US
dc.identifier.citedreferenceLaity, J. E. ( 2009 ), Landforms, landscapes, and processes of aeolian erosion, in Geomorphology of Desert Environments, 2nd ed., edited by A. J. Parsons and A. D. Abrahams, pp. 597 – 627, Springer Science + Business Media B.V.en_US
dc.identifier.citedreferenceLaity, J. E., and N. T. Bridges ( 2009 ), Ventifacts on Earth and Mars: Analytical, field, and laboratory studies supporting sand abrasion and windward feature development, Geomorphology, 105, 202 – 217.en_US
dc.identifier.citedreferenceLaity, J. E., and N. T. Bridges ( 2013 ), Fundamentals of aeolian sediment transport: Abraded systems, in Treatise on Geomorphology, Aeolian Geomorphology, vol. 11, edited by J. Shroder et al., pp. 269 – 286, Academic Press, San Diego, Calif.en_US
dc.identifier.citedreferenceLancaster, N. ( 1984 ), Characteristics and occurrence of wind erosion features in the Namib desert, Earth Surf. Processes Landforms, 9, 469 – 488.en_US
dc.identifier.citedreferenceLangevin, Y., B. Gondet, S. Le Mouélic, O. Gasnault, K. Herkenhoff, D. Blaney, S. Maurice, R. Wiens, and the MSL Science Team ( 2013 ), Processing approaches for optimal science exploitation of the ChemCam remote microscopic imager (RMI) during the first 90 days of Curiosity operations, Lunar Planet. Sci., XLIV, 1227.en_US
dc.identifier.citedreferenceLe Mouélic, S., et al. ( 2014 ), The Chemcam remote micro‐imager at Gale Crater: Review of the first year on Mars, Icarus, doi: 10.1016/j.icarus.2014.05.030.en_US
dc.identifier.citedreferenceMaki, J., D. Thiessen, A. Pourangi, P. Kobzeff, T. Litwin, L. Scherr, S. Elliott, A. Dingizian, and M. Maimone ( 2011 ), The Mars Science Laboratory engineering cameras, Space Sci. Rev., 170, 77 – 93, doi: 10.1007/s11214‐012‐9882‐4.en_US
dc.identifier.citedreferenceMalin, M. C., and K. S. Edgett ( 2000 ), Sedimentary rocks of early Mars, Science, 290, 1927 – 1937, doi: 10.1126/science.290.5498.1927.en_US
dc.identifier.citedreferenceMalin, M. C., et al. ( 2010 ), The Mars Science Laboratory (MSL) Mast‐Mounted Cameras (Mastcams) flight instruments, Lunar Planet. Sci., XLI, 1123.en_US
dc.identifier.citedreferenceMaxson, J. H. ( 1940 ), Fluting and faceting of rock fragments, J. Geol., 48, 717 – 751.en_US
dc.identifier.citedreferenceMcCauley, J. F., C. S. Breed, F. El‐Baz, M. I. Whitney, M. J. Grolier, and A. W. Ward ( 1979 ), Pitted and fluted rocks in the Western Desert of Egypt: Viking comparison, J. Geophys. Res., 84, 8222 – 8232, doi: 10.1029/JB084iB14p08222.en_US
dc.identifier.citedreferenceMcKenna‐Neumann, C., and R. Gilbert ( 1986 ), Aeolian processes and landforms in glaciofluvial environments of southeastern Baffin Island, N.W.T., Canada, in Aeolian Geomorphology, edited by W. G. Nickling, pp. 213 – 235, Allen and Unwin, Boston.en_US
dc.identifier.citedreferenceMilliken, R. E., J. P. Grotzinger, and B. J. Thomson ( 2010 ), Paleoclimate of Mars as captured by the stratigraphic record of Gale Crater, Geophys. Res. Lett., 37, L04201, doi: 10.1029/2009GL041870.en_US
dc.identifier.citedreferenceOllila, A. M., et al. ( 2014 ), Trace element geochemistry (Li, Ba, Sr, and Rb) using Curiosity 's ChemCam: Early results for Gale Crater from Bradbury Landing site to Rocknest, J. Geophys. Res. Planets, 119, 255 – 285, doi: 10.1002/2013JE004517.en_US
dc.identifier.citedreferencePalucis, M. C., W. E. Dietrich, A. Hayes, R. M. E. Williams, F. Calef, D. Y. Sumner, S. Gupta, C. Hardgrove, and the MSL Science Team ( 2013 ), Origin and evolution of the Peace Vallis fan system that drains into the Curiosity landing area, Gale Crater, Lunar Planet. Sci., XLIV, 1607.en_US
dc.identifier.citedreferencePhilipps, R. J., et al. ( 2011 ), Massive CO 2 deposits sequestered in the south polar layered deposits of Mars, Science, 332, 838 – 841.en_US
dc.identifier.citedreferencePotter, R. M., and G. R. Rossman ( 1977 ), Desert varnish—Importance of clay minerals, Science, 196, 1446 – 1448.en_US
dc.identifier.citedreferencePotter, R. M., and G. R. Rossman ( 1979 ), Mineralogy of manganese dendrites and coatings, Am. Mineral., 64, 1219 – 1226.en_US
dc.identifier.citedreferenceRichardson, M. I., A. D. Toigo, and C. E. Newman ( 2007 ), PlanetWFT: A general purpose, local to global numerical model for planetary atmospheric and climate dynamics, J. Geophys. Res., 112, E09001, doi: 10.1029/2006JE002825.en_US
dc.identifier.citedreferenceRubin, D. M., and R. E. Hunter ( 1987 ), Bedform alignment in directionally varying flows, Science, 237, 276 – 278.en_US
dc.identifier.citedreferenceSharp, R. P. ( 1949 ), ), Pleistocene ventifacts east of the Big Horn Mountains, Wyoming, J. Geol., 57, 173 – 195.en_US
dc.identifier.citedreferenceSharp, R. P. ( 1964 ), Wind‐driven sand in Coachella Valley, California, Bull. Geol. Soc. Am., 75, 785 – 804.en_US
dc.identifier.citedreferenceSilvestro, S., L. K. Fenton, D. A. Vaz, N. T. Bridges, and G. G. Ori ( 2010 ), Ripple migration and dune activity on Mars: Evidence for dynamic processes, Geophys. Res. Lett., 37, L20203, doi: 10.1029/2010GL044743.en_US
dc.identifier.citedreferenceSilvestro, S., D. A. Vaz, R. C. Ewing, A. P. Rossi, L. K. Fenton, T. I. Michaels, J. Flahaut, and P. E. Geissler ( 2012 ), Pervasive aeolian activity along rover Curiosity's traverse in Gale Crater, Mars, Geology, 41, 483 – 486.en_US
dc.identifier.citedreferenceSmith, D. E., et al. ( 2001 ), Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars, J. Geophys. Res., 106, 23,689 – 23,722, doi: 10.1029/2000JE001364.en_US
dc.identifier.citedreferenceSmith, R. S. U. ( 1984 ), Eolian geomorphology of the Devils Playground, Kelso Dunes and Silurian Valley, California, in Geological Society of America 97th Annual Meeting Field Trip Guidebook, Reno, Nevada, Western Geological Excursions, vol. 1, edited by J. Lintz, pp. 239 – 251, Geol. Soc. Am., Boulder, Colo.en_US
dc.identifier.citedreferenceStarkey, H. C. ( 1982 ), The role of clays in fixing aluminum; contributions to geochemical prospecting for minerals, in Geological Society of America Bulletin 1278‐F, U.S. Government Printing Office, Washington, D. C. [Available at pubs.usgs.gov/bul/1278f/report.pdf.]en_US
dc.identifier.citedreferenceSullivan, R., et al. ( 2005 ), Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site, Nature, 436, 58 – 61, doi: 10.1038/nature03641.en_US
dc.identifier.citedreferenceThiagarajan, N., and C. A. Lee ( 2004 ), Trace‐element evidence for the origin of desert varnish by direct aqueous atmospheric deposition, Earth Planet. Sci. Lett., 244, 131 – 141.en_US
dc.identifier.citedreferenceThomson, B. J., N. T. Bridges, and R. Greeley ( 2008 ), Rock abrasion features in the Columbia Hills, Mars, J. Geophys. Res., 113, E08010, doi: 10.1029/2007JE003018.en_US
dc.identifier.citedreferenceThomson, B. J., et al. ( 2011 ), Constraints on the origin and evolution of the layered mound in Gale Crater, Mars using Mars Reconnaissance Orbiter data, Icarus, 214, 413 – 432.en_US
dc.identifier.citedreferenceToigo, A. D., C. Lee, C. E. Newman, and M. I. Richardson ( 2012 ), The impact of resolution on the dynamics of the Martian global atmosphere: Varying resolution studies with the MarsWRF GCM, Icarus, 221, 276 – 288.en_US
dc.identifier.citedreferenceTsoar, H. ( 2001 ), Types of aeolian sand dunes and their formation, in Geomorphological Fluid Mechanics, edited by N. J. Balmforth and A. Provenzale, pp. 403 – 429, Springer, Berlin.en_US
dc.identifier.citedreferenceVarkonyi, P. L., and J. E. Laity ( 2012 ), Formation of surface features on ventifacts: Modeling the role of sand grains rebounding within cavities, Geomorphology, 139, 220 – 229.en_US
dc.identifier.citedreferenceWiens, R. C., et al. ( 2012 ), The ChemCam instrument suite on the Mars Science Laboratory (MSL) Rover: Body unit and combined systems tests, Space Sci. Rev., 170, 167 – 227, doi: 10.1007/s11214‐012‐9902‐4.en_US
dc.identifier.citedreferenceWilson, P., H. H. Christiansen, and S. M. Ross ( 2002 ), The geomorphological context and significance of wind‐abraded gravels, boulders and outcrops from the coast of Scotland, Scott. Geogr. J., 118, 41 – 45.en_US
dc.identifier.citedreferenceYingst, R. A., et al. ( 2013 ), Characteristics of pebble and cobble‐sized clasts along the Curiosity rover traverse from Bradbury Landing to Rocknest, J. Geophys. Res. Planets, 118, 2361 – 2380, doi: 10.1002/2013JE004435.en_US
dc.identifier.citedreferenceIversen, J. D., and B. R. White ( 1982 ), Saltation threshold on Earth, Mars, and Venus, Sedimentology, 29, 111 – 119.en_US
dc.identifier.citedreferenceAghevli, A., et al. ( 2006 ), Planning application for three Mars missions with Ensemble, 5th International Workshop on Planning and Scheduling for Space.en_US
dc.identifier.citedreferenceAnderson, R. B., and J. F. Bell ( 2010 ), Geologic mapping and characterization of Gale Crater and implications for its potential as a Mars Science Laboratory landing site, Mars, 5, 76 – 128.en_US
dc.identifier.citedreferenceAnderson, R. S. ( 1986 ), Erosion profiles due to particles entrained by wind: Application of an eolian sediment‐transport model, Geol. Soc. Am. Bull., 97, 1270 – 1278.en_US
dc.identifier.citedreferenceArmstrong, J. C., and C. B. Leovy ( 2005 ), Long term wind erosion on Mars, Icarus, 176, 57 – 74.en_US
dc.identifier.citedreferenceBishop, D. G., and D. C. Mildenhall ( 1994 ), The geological setting of ventifacts and wind‐sculpted rocks at Mason Bay, Stewart Island, and their implications for late Quaternary paleoclimates, N. Z. J. Geol. Geophys., 37, 169 – 180.en_US
dc.identifier.citedreferenceBlackwelder, E. ( 1929 ), Sandblast action in relation to the glaciers of the Sierra Nevada, J. Geol., 37, 256 – 260.en_US
dc.identifier.citedreferenceBlake, D. F., et al. ( 2013 ), Curiosity at Gale Crater, Mars: Characterization and analysis of the Rocknest sand shadow, Science, 341, 1,239,505, doi: 10.1126/science.1239505.en_US
dc.identifier.citedreferenceBreed, C. S., J. F. McCauley, and M. I. Whitney ( 1989 ), Wind erosion forms, in Arid Zone Geomorphology, edited by D. S. G. Thomas, pp. 284 – 307, Belhaven Press, London.en_US
dc.identifier.citedreferenceBridges, N. T., and J. E. Laity ( 2013 ), Fundamentals of aeolian sediment transport: Aeolian abrasion, in Treatise on Geomorphology, Aeolian Geomorphology, vol. 11, edited by J. Shroder et al., pp. 134 – 148, Academic Press, San Diego, Calif.en_US
dc.identifier.citedreferenceBridges, N. T., R. Greeley, A. F. C. Haldemann, K. E. Herkenhoff, M. Kraft, T. J. Parker, and A. W. Ward ( 1999 ), Ventifacts at the Pathfinder landing site, J. Geophys. Res., 104, 8595 – 8615, doi: 10.1029/98JE02550.en_US
dc.identifier.citedreferenceBridges, N. T., J. E. Laity, R. Greeley, J. Phoreman, and E. E. Eddlemon ( 2004 ), Mechanisms of rock abrasion and ventifact formation from laboratory and field analog studies with applications to Mars, Planet. Space Sci., 52, 199 – 213.en_US
dc.identifier.citedreferenceBridges, N. T., et al. ( 2012a ), Planet‐wide sand motion on Mars, Geology, 40, 31 – 34.en_US
dc.identifier.citedreferenceBridges, N. T., F. Ayoub, J.‐P. Avouac, S. Leprince, A. Lucas, and S. Mattson ( 2012b ), Earth‐like sand fluxes on Mars, Nature, 485, 339 – 342.en_US
dc.identifier.citedreferenceCalef, F. J., et al. ( 2013 ), Geologic mapping of the Mars Science Laboratory landing ellipse, Lunar Planet. Sci., XLIV, 2511.en_US
dc.identifier.citedreferenceChojnacki, M., D. M. Burr, J. E. Moersch, and T. J. Michaels ( 2011 ), Orbital observations of contemporary dune activity in Endeavour Crater, Meridiani Planum, Mars, J. Geophys. Res., 116, E00F19, doi: 10.1029/2010JE003675.en_US
dc.identifier.citedreferenceChristensen, P. R., et al. ( 2001 ), Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results, J. Geophys. Res., 106, 23,823 – 23,871, doi: 10.1029/2000JE001370.en_US
dc.identifier.citedreferenceCrockett, T., K. Shams, and J. R. Morris ( 2011 ), Telerobotics as programming, IEEE IEEECA paper#1489.en_US
dc.identifier.citedreferenceDorn, R. I. ( 1998 ), Rock Coatings, 429 pp., Elsevier, Amsterdam.en_US
dc.identifier.citedreferenceEdgett, K. S., et al. ( 2009 ), The Mars Science Laboratory (MSL) Mars Hand Lens Imager (MAHLI) flight instrument, Lunar Planet. Sci., XL, 1197.en_US
dc.identifier.citedreferenceFarley, K. A., et al. ( 2014 ), In situ radiometric and exposure age dating of the Martian surface, Science, 343, 1,247,166.en_US
dc.identifier.citedreferenceFarr, T., and J. B. Adams ( 1984 ), Rock coatings in Hawaii, Geol. Soc. Am. Bull., 95, 1077 – 1083.en_US
dc.identifier.citedreferenceFenton, L. K., and M. I. Richardson ( 2001 ), Martian surface winds: Insensitivity to orbital changes and implications for aeolian processes, J. Geophys. Res., 106, 32,885 – 32,902, doi: 10.1029/2000JE001407.en_US
dc.identifier.citedreferenceFryberger, S. G., and G. Dean ( 1979 ), Dune forms and wind regime, in A Study of Global Sand Seas, USGS Prof. Paper 1052, edited by E. D. McKee, pp. 137 – 170, U.S. Government Printing Office, Washington, D. C.en_US
dc.identifier.citedreferenceGoetz, W., et al. ( 2013 ), Morphological and chemical characteristics of sediment in the Rocknest eolian sand shadow, Gale Crater, Mars, Lunar Planet. Sci., XLIV, 1222.en_US
dc.identifier.citedreferenceGomez‐Elvira, J., et al. ( 2011 ), Rover environmental monitoring stations for MSL mission, 4th International Workshop on the Mars atmosphere: Modeling and observations.en_US
dc.identifier.citedreferenceGreeley, R., M. D. Kraft, R. O. Kuzmin, and N. T. Bridges ( 2000 ), Mars Pathfinder landing site: Evidence for a change in wind regime from lander and orbiter data, J. Geophys. Res., 105, 1829 – 1840, doi: 10.1029/1999JE001072.en_US
dc.identifier.citedreferenceGreeley, R., et al. ( 2006 ), Gusev crater: Wind related features and processes observed by the Mars Exploration Rover Spirit, J. Geophys. Res., 111, E02S09, doi: 10.1029/2005JE002491.en_US
dc.identifier.citedreferenceGreeley, R., et al. ( 2008 ), Columbia Hills, Mars: Aeolian features seen from the ground and orbit, J. Geophys. Res., 113, E06S06, doi: 10.1029/2007JE002971.en_US
dc.identifier.citedreferenceHaberle, R. M., J. R. Murphy, and J. Schaeffer ( 2003 ), Orbital change experiments with a Mars general circulation model, Icarus, 161, 66 – 89.en_US
dc.identifier.citedreferenceHansen, C. J., et al. ( 2012 ), Seasonal erosion and restoration of Mars' northern polar dunes, Science, 331, 575 – 578.en_US
dc.identifier.citedreferenceHoare, P. G., C. R. Stevenson, and S. P. Godby ( 2002 ), Sand sheets and ventifacts: The legacy of aeolian action in west Norfolk, UK, Proc. Geol. Assoc., 113, 301 – 317.en_US
dc.identifier.citedreferenceKieffer, H. H., and A. P. Zent ( 1992 ), Quasi‐periodic climate change on Mars, in Mars, edited by H. H. Kieffer et al., pp. 1180 – 1218, Univ. of Arizona Press, Tucson.en_US
dc.identifier.citedreferenceKite, E. S., K. W. Lewis, M. P. Lamb, C. E. Newman, and M. I. Richardson ( 2013 ), Growth and form of the mound in Gale Crater, Mars: Slope wind enhanced erosion and transport, Geology, 41, 543 – 546.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.