Show simple item record

Niche Inheritance: A Cooperative Pathway to Enhance Cancer Cell Fitness Though Ecosystem Engineering

dc.contributor.authorYang, Kimberline Ren_US
dc.contributor.authorMooney, Steven M.en_US
dc.contributor.authorZarif, Jelani C.en_US
dc.contributor.authorCoffey, Donald S.en_US
dc.contributor.authorTaichman, Russell S.en_US
dc.contributor.authorPienta, Kenneth J.en_US
dc.date.accessioned2014-08-06T16:50:03Z
dc.date.availableWITHHELD_14_MONTHSen_US
dc.date.available2014-08-06T16:50:03Z
dc.date.issued2014-09en_US
dc.identifier.citationYang, Kimberline R; Mooney, Steven M.; Zarif, Jelani C.; Coffey, Donald S.; Taichman, Russell S.; Pienta, Kenneth J. (2014). "Niche Inheritance: A Cooperative Pathway to Enhance Cancer Cell Fitness Though Ecosystem Engineering." Journal of Cellular Biochemistry 115(9): 1478-1485.en_US
dc.identifier.issn0730-2312en_US
dc.identifier.issn1097-4644en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108092
dc.description.abstractCancer cells can be described as an invasive species that is able to establish itself in a new environment. The concept of niche construction can be utilized to describe the process by which cancer cells terraform their environment, thereby engineering an ecosystem that promotes the genetic fitness of the species. Ecological dispersion theory can then be utilized to describe and model the steps and barriers involved in a successful diaspora as the cancer cells leave the original host organ and migrate to new host organs to successfully establish a new metastatic community. These ecological concepts can be further utilized to define new diagnostic and therapeutic areas for lethal cancers. 115: 1478–1485, 2014. © 2014 Wiley Periodicals, Inc.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherUniversity of Chicago Pressen_US
dc.subject.otherDiasporaen_US
dc.subject.otherNiche Constructionen_US
dc.subject.otherMetastasisen_US
dc.subject.otherGenetic Instabilityen_US
dc.subject.otherTumor Cell Heterogeneityen_US
dc.subject.otherDispersal Filtersen_US
dc.titleNiche Inheritance: A Cooperative Pathway to Enhance Cancer Cell Fitness Though Ecosystem Engineeringen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeneticsen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108092/1/jcb24813.pdf
dc.identifier.doi10.1002/jcb.24813en_US
dc.identifier.sourceJournal of Cellular Biochemistryen_US
dc.identifier.citedreferencePlaks V, Koopman CD, Werb Z. 2013. Circulating tumor cells. Science 341: 1186 – 1188.en_US
dc.identifier.citedreferenceOdling‐Smee FJ, Erwin DH, Palkovacs EP, Feldman MW, Laland KN. 2013. Niche construction theory: A practical guide for ecologists. Q Rev Biol 1: 4 – 28.en_US
dc.identifier.citedreferenceOskarsson T, Batlle E, Massagué J. 2014. Metastatic stem cells: Sources, niches, and vital pathways. Cell Stem Cell 14: 306 – 321.en_US
dc.identifier.citedreferencePaget S. 1989. The distribution of secondary growths in cancer of the breast. Lancet 1: 571 – 573.en_US
dc.identifier.citedreferencePienta KJ, Robertson BA, Coffey DS, Taichman RS. 2013. The cancer diaspora: Metastasis beyond the seed and soil hypothesis. Clin Cancer Res 19 ( 21 ): 5849 – 5855.en_US
dc.identifier.citedreferenceOdling‐Smee FJ, Laland KN, Feldman MW. 2003. Niche construction: The neglected process in evolution. Princeton, NJ: Princeton University Press.en_US
dc.identifier.citedreferencePost DM, Palkovacs EP. 2009. Eco‐evolutionary feedbacks in community and ecosystem ecology: Interactions between the ecological theatre and the evolutionary play. Philos Trans R Soc B 364: 1629 – 1640.en_US
dc.identifier.citedreferenceRamakrishna R, Rostomily R. 2013. Seed, soil, and beyond: The basic biology of brain metastasis. Surg Neurol Int 4: S256 – S264.en_US
dc.identifier.citedreferenceRobertson BA, Rehage JS, Sih A. 2013. Ecological novelty and the emergence of evolutionary traps. Trends Ecol Evol 28: 552 – 560.en_US
dc.identifier.citedreferenceSalerno EP, Olson WC, McSkimming C, Shea S, Lingluff CL, Jr. 2014. T cells in the human metastatic melanoma microenvironment express site‐specific homing receptors and retention integrins. Int J Cancer 134: 563 – 574.en_US
dc.identifier.citedreferenceScott JG, Basanta D, Anderson AR, Gerlee P. 2013. A mathematical model of tumour self‐seeding reveals secondary metastatic deposits as drivers of primary tumour growth. J R Soc Interface 82: 20130011.en_US
dc.identifier.citedreferenceScott JG, Hjelmeland AB, Chinnaiyan P, Anderson AR, Basanta D. 2014. Microenvironmental variables must influence intrinsic phenotypic parameters of cancer stem cells to affect tumourigenicity. PLoS Comput Biol 1: e1003433.en_US
dc.identifier.citedreferenceSemenza GL. 2012. Molecular mechanisms mediating metastasis of hypoxic breast cancer cells. Trends Mol Med 18: 534 – 543.en_US
dc.identifier.citedreferenceShibue T, Weinberg RA. 2009. Integrin 1‐focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proc Natl Acad Sci USA 106: 10290 – 10295.en_US
dc.identifier.citedreferenceShiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J, et al. 2011. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest 121: 1298 – 1312.en_US
dc.identifier.citedreferenceSreevalsan S, Safe S. 2013. Reactive oxygen species and colorectal cancer. Curr Colorectal Cancer Rep 9: 350 – 357.en_US
dc.identifier.citedreferenceSteeg PS. 2006. Tumor metastasis: Mechanistic insights and clinical challenges. Nat Med 12: 895 – 904.en_US
dc.identifier.citedreferenceStylianopoulos T, Jain RK. 2013. Combining two strategies to improve perfusion and drug delivery in solid tumors. Proc Natl Acad Sci USA 110 ( 46 ): 18632 – 18637.en_US
dc.identifier.citedreferenceSuarez AV, Holway DA, Case TJ. 2001. Patterns of spread in biological invasions dominated by long‐distance jump dispersal: Insights from Argentine ants. Proc Natl Acad Sci USA 98 ( 3 ): 1095 – 1100.en_US
dc.identifier.citedreferenceTarhini AA, Edington H, Butterfield LH, Lin Y, Shuai Y, Tawbi H, Sander C, Yin Y, Holtzman M, Johnson J, Rao UN, Kirkwood JM. 2014. Immune monitoring of the circulation and the tumor microenvironment in patients with regionally advanced melanoma receiving neoadjuvant ipilimumab. PLoS ONE 9 ( 2 ): e87705.en_US
dc.identifier.citedreferenceThuiller W, Münkemüller T, Lavergne S, Mouillot D, Mouquet N, Schiffers K, Gravel D. 2013. A road map for integrating eco‐ecolutionary processes into biodiversity models. Ecol Lett 16: 94 – 105.en_US
dc.identifier.citedreferenceTinhofer I, Saki M, Niehr F, Keilholz U, Budach V. 2014. 2014. Cancer stem cell characteristics of circulating tumor cells. Int J Radiat Biol (in press).en_US
dc.identifier.citedreferenceVan der Sanden B, Appaix F, Berger F, Selek L, Issartel JP, Wion D. 2013. Translation of the ecological trap concept to glioma therapy: The cancer cell trap concept. Future Oncol 9: 817 – 824.en_US
dc.identifier.citedreferenceVan Dyken JD, Wade MJ. 2012. Origins of altruism diversity II: Runaway coevolution of altruistic strategies via “reciprocal niche construction”. Evolution 66: 2498 – 2513.en_US
dc.identifier.citedreferenceWagstaff L, Kolahgar G, Piddini E. 2013. Competitive cell interactions in cancer: A cellular tug of war. Trends Cell Biol 23: 160 – 167.en_US
dc.identifier.citedreferenceWan L, Pantel K, Kang Y. 2013. Tumor metastasis: Moving new biological insights into the clinic. Nat Med 19: 1450 – 1464.en_US
dc.identifier.citedreferenceWang J, Loberg R, Taichman RS. 2006. The pivotal role of CXCL12 (SDF‐1)/CXCR4 axis in bone metastasis. Cancer Metastasis Rev 25: 573 – 587.en_US
dc.identifier.citedreferenceWaris G, Ahsan H. 2006. Reactive oxygen species: Role in the development of cancer and various chronic conditions. J Carcinog 5: 14.en_US
dc.identifier.citedreferenceWeiss L, Bronk J, Pickren JW, Lane WW. 1981. Metastatic patterns and target organ arterial blood flow. Invasion Metastasis 1: 126 – 135.en_US
dc.identifier.citedreferenceWey JS, Stoeltzing O, Ellis LM. 2004. Vascular endothelial growth factor receptors: Expression and function in solid tumors. Clin Adv Hematol Oncol 1: 37 – 45.en_US
dc.identifier.citedreferenceYu P, Fu YX. 2006. Tumor‐infiltrating T lymphocytes: Friends or foes? Lab Invest 86: 231 – 245.en_US
dc.identifier.citedreferenceZitvogel L, Apetoh L, Ghiringhelli F, André F, Tesniere A, Koemer G. 2008. The anticancer immune respones: Indispensable for therapeutic success? J Clin Invest 118: 1991 – 2001.en_US
dc.identifier.citedreferenceZetter BR. 1998. Angiogenesis and tumor metastasis. Annu Rev Med 49: 407 – 424.en_US
dc.identifier.citedreferenceNguyen DX, Bos PD, Massagué J. 2009. Metastasis: From dissemination to organ‐specific colonization. Nat Rev Cancer 9: 274 – 284.en_US
dc.identifier.citedreferenceNishikawa M. 2008. Reactive oxygen species in tumor metastasis. Cancer Lett 18: 53 – 59.en_US
dc.identifier.citedreferenceAktipis CA, Boddy AM, Gatenby RA, Brown JS, Maley CC. 2013. Life history trade‐offs in cancer evolution. Nat Rev Cancer 12: 883 – 892.en_US
dc.identifier.citedreferenceBadano EI, Cavieres LA. 2006. Ecosystem engineering across ecosystems: Do engineer species sharing common features have generalized or idiosyncratic effects on species diversity? J Biogeogr 33 ( 2 ): 304 – 313.en_US
dc.identifier.citedreferenceBarar J, Omidi Y. 2013. Dysregulated pH in tumor microenvironment checkmates cancer therapy. Bioimpacts 4: 149 – 162.en_US
dc.identifier.citedreferenceBoulangeat I, Gravel D, Thuiller W. 2012. Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances. Ecol Lett 15: 584 – 593.en_US
dc.identifier.citedreferenceBurkholder B, Huang RY, Burgess R, Luo S, Jones VS, Zhang W, Lv ZQ, Gao CY, Wang BL, Zhang YM, Huang RP. 2014. Tumor‐induced perturbations of cytokines and immune cell networks. Biochim Biophys Acta 1845 ( 2 ): 182 – 201.en_US
dc.identifier.citedreferenceCamacho DF, Pienta KJ. 2012. Disrupting the networks of cancer. Clin Cancer Res 18 ( 10 ): 2801 – 2808.en_US
dc.identifier.citedreferenceCatalano V, Turdo A, Di Franco S, Dieli F, Todaro M, Stassi G. 2013. Tumor and its microenvironment: A synergistic interplay. Semin Cancer Biol B 6: 522 – 532.en_US
dc.identifier.citedreferenceCharpentier M, Martin S. 2013. Interplay of stem cell characteristics, EMT, and microtentacles in circulating breast tumor cells. Cancers (Basel) 5 ( 4 ): 1545 – 1565.en_US
dc.identifier.citedreferenceChaturvedi P, Gilkes DM, Wong CC, Kshitiz, Luo W, Zhang H, Wei H, et al. 2013. Hypoxia‐inducible factor‐dependent breast cancer‐mesenchymal stem cell bidirectional signaling promotes metastasis. J Clin Invest 123: 189 – 205.en_US
dc.identifier.citedreferenceChen KW, Pienta KJ. 2011. Modeling invasion of metastasizing cancer cells to bone marrow utilizing ecological principles. Theor Biol Med Model 8: 36.en_US
dc.identifier.citedreferenceComen E, Norton L. 2012. Self‐seeding in cancer. Recent Results Cancer Res 195: 13 – 23.en_US
dc.identifier.citedreferenceDe Valpine P, Cuddington K, Hoopes MF, Lockwood JL. 2008. Is spread of invasive species regulated? Using ecological theory to interpret statistical analysis. Ecology 9: 2377 – 2383.en_US
dc.identifier.citedreferenceElton CS. 2001. Animal ecology. Chicago, IL: University of Chicago Press. ISBN 0‐226‐20639‐4.en_US
dc.identifier.citedreferenceErwin DH. 2008. Macroevolution of ecosystem engineering, niche construction and diversity. Trends Ecol Evol 23: 304 – 310.en_US
dc.identifier.citedreferenceFaraji F, Eissenberg JC. 2013. Seed and soil: A conceptual framework of metastasis for clinicians. Mol Med 110: 302 – 308.en_US
dc.identifier.citedreferenceFidler IJ. 1970. Metastasis: Quantitative analysis of distribution and fate of tumor emboli labeled with 125 I‐5‐iodo‐2′‐deoxyuridine. J Natl Cancer Inst 45: 773 – 782.en_US
dc.identifier.citedreferenceFidler IJ. 1973. Selection of successive tumor lines for metastasis. Nat New Biol 242: 148 – 119.en_US
dc.identifier.citedreferenceFolkman J. 1971. Tumor angiogenesis: Therapeutic implications. N Engl J Med 18: 1182 – 1186.en_US
dc.identifier.citedreferenceFridman WH, Pagés F, Satés‐Fridman C, Galon J. 2012. The immune contexture in human tumours: Impact on clinical outcome. Nat Rev Cancer 15: 298 – 306.en_US
dc.identifier.citedreferenceGatenby RA. 1991. Population ecology issues in tumor growth. Cancer Res 51: 2542 – 2547.en_US
dc.identifier.citedreferenceGrinnell J. 1917. The niche‐relationships of the California Thrasher. Auk 34: 427 – 433.en_US
dc.identifier.citedreferenceGupta GP, Massagué J. 2006. Cancer metastasis: Building a framework. Cell 127: 679 – 695.en_US
dc.identifier.citedreferenceHanahan D, Weinberg RA. 2011. Hallmarks of cancer: The next generation. Cell 144 ( 5 ): 646 – 674.en_US
dc.identifier.citedreferenceHealy M, Mason TV, Ricou L. 2009. Hardy/unkillable clichés: Exploring the meanings of the domestic alien, passer domesticus. ISLE (Oxford University Press) 16 ( 2 ): 281 – 298.en_US
dc.identifier.citedreferenceHickman JE, Wu S, Mickley LJ, Lerdau MT, Kudzu. 2010. (Pueraria montana) invasion doubles emissions of nitric oxide and increases ozone pollution. Proc Natl Acad Sci USA 107 ( 22 ): 10115 – 10119.en_US
dc.identifier.citedreferenceHunter K. 2006. Host genetics influence tumour metastasis. Nat Rev Cancer 2: 141 – 146.en_US
dc.identifier.citedreferenceHutchinson GE. 1957. Concluding remarks. Cold Spring Harbor Symp Quant Biol 22 ( 2 ): 415 – 427.en_US
dc.identifier.citedreferenceJain RK. 2012. Delivery of molecular and cellular medicine to solid tumors. Adv Drug Deliv Rev 64 ( Suppl ): 353 – 365.en_US
dc.identifier.citedreferenceJohnston RF, Selander RK. 1973. Evolution in the House Sparrow. III. Variation in size and sexual dimorphism in Europe and North and South America. Am Nat 107 ( 955 ): 373 – 390.en_US
dc.identifier.citedreferenceJones CG, Lawton JH, Shachak M. 1994. Organisms as ecosystem engineers. Oikos 69: 373 – 386.en_US
dc.identifier.citedreferenceJones CG, Lawton JH, Shachak M. 1997. Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78: 1946 – 1957.en_US
dc.identifier.citedreferenceKim MY, Oskarsson T, Acharyya S, Nguyen DX, Zhang XH, Norton L, Massagué J. 2009. Tumor self‐seeding by circulating cancer cells. Cell 139: 1315 – 1326.en_US
dc.identifier.citedreferenceKlein CA. 2013. Selection and adaptation during metastatic cancer progression. Nature 501 ( 7467 ): 365 – 372.en_US
dc.identifier.citedreferenceKnutson KL, Disis ML. 2005. Tumor antigen‐specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother 54: 721 – 728.en_US
dc.identifier.citedreferenceKrakauer DC, Page KM, Erwin DH. 2009. Diversity, dilemmas, and monopolies of niche construction. Am Nat 173: 26 – 40.en_US
dc.identifier.citedreferenceKylafis G, Loreau M. 2008. Ecological and evolutionary consequences of niche construction for its agent. Ecol Lett 11: 1072 – 1081.en_US
dc.identifier.citedreferenceLavi O, Greene JM, Levy D, Gottesman MM. 2014. Simplifying the complexity of resistance heterogeneity in metastasis. Trends Mol Med 3: 129 – 136.en_US
dc.identifier.citedreferenceLi WA, Mooney DJ. 2013. Materials based tumor immunotherapy vaccines. Curr Opin Immunol 25: 238 – 245.en_US
dc.identifier.citedreferenceLianidou ES, Mavroudis D, Pantel K. 2013. Advances in circulating tumor cells (ACTC): From basic research to clinical practice. Breast Cancer Res 15 ( 6 ): 319.en_US
dc.identifier.citedreferenceLoberg RD, Bradley DA, Tomlins SA, Chinnaiyan AM, Pienta KJ. 2007. The lethal phenotype of cancer: The molecular basis of death due to malignancy. CA Cancer J Clin 57 ( 4 ): 225 – 241.en_US
dc.identifier.citedreferenceLoreau M. 2010. From populations to ecosystems: Theoretical foundations for a new ecological synthesis. Princeton, NJ: Princeton University Press.en_US
dc.identifier.citedreferenceLowes LE, Allan AL. 2014. Recent advances in the molecular characterization of circulating tumor cells. Cancers (Basel) 6 ( 1 ): 595 – 624.en_US
dc.identifier.citedreferenceMaire V, Gross N, Börger L, Proulx R, Wirth C, da Silveira Pontes L, Soussana JF, Louault F. 2012. Habitat filtering and niche differentiation jointly explain species relative abundance within grassland communities along fertility and disturbance gradients. New Phytol 2: 497 – 509.en_US
dc.identifier.citedreferenceMatho L, Stenninger J. 2012. Behavior of seeds and soil in the mechanism of metastasis: A deeper understanding. Cancer Sci 103: 626 – 631.en_US
dc.identifier.citedreferenceMitchell MJ, Wayne E, Rana K, Schaffer CB, King MR. 2014. TRAIL‐coated leukocytes that kill cancer cells in the circulation. Proc Natl Acad Sci USA 111: 930 – 935.en_US
dc.identifier.citedreferencePedersen EA, Shiozawa Y, Pienta KJ, Taichman RS. 2012. The prostate cancer bone marrow niche: more than just ‘fertile soil’. Asian J Androl 14: 423 – 427.en_US
dc.identifier.citedreferencePienta KJ, Partin AW, Coffey DS. 1989. Cancer as a disease of DNA organization and dynamic cell structure. Cancer Res 49 ( 10 ): 2525 – 2532.en_US
dc.identifier.citedreferencePienta KJ, McGregor N, Axelrod R, Axelrod DE. 2008. Ecological therapy for cancer: defining tumors using an ecosystem paradigm suggests new opportunities for novel cancer treatments. Transl Oncol 1: 158 – 164.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.