Show simple item record

Genomic signatures of obligate host dependence in the luminous bacterial symbiont of a vertebrate

dc.contributor.authorHendry, Tory A.en_US
dc.contributor.authorWet, Jeffrey R.en_US
dc.contributor.authorDunlap, Paul V.en_US
dc.date.accessioned2014-08-06T16:50:04Z
dc.date.availableWITHHELD_13_MONTHSen_US
dc.date.available2014-08-06T16:50:04Z
dc.date.issued2014-08en_US
dc.identifier.citationHendry, Tory A.; Wet, Jeffrey R.; Dunlap, Paul V. (2014). "Genomic signatures of obligate host dependence in the luminous bacterial symbiont of a vertebrate." Environmental Microbiology (8): 2611-2622.en_US
dc.identifier.issn1462-2912en_US
dc.identifier.issn1462-2920en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108095
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherUniversity of Hawaii Pressen_US
dc.titleGenomic signatures of obligate host dependence in the luminous bacterial symbiont of a vertebrateen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108095/1/emi12302.pdf
dc.identifier.doi10.1111/1462-2920.12302en_US
dc.identifier.sourceEnvironmental Microbiologyen_US
dc.identifier.citedreferenceNyholm, S.V., and McFall‐Ngai, M.J. ( 2004 ) The winnowing: establishing the squid‐ Vibrio symbiosis. Nat Rev Microbiol 2: 632 – 642.en_US
dc.identifier.citedreferencePreheim, S.P., Boucher, Y., Wildschutte, H., David, L.A., Veneziano, D., Alm, E.J., and Polz, M.F. ( 2011 ) Metapopulation structure of Vibrionaceae among coastal marine invertebrates. Environ Microbiol 13: 265 – 275.en_US
dc.identifier.citedreferenceRaes, J., Korbel, J.O., Lercher, M.L., von Mering, C., and Bork, P. ( 2007 ) Prediction of effective genome size in metagenomic samples. Genome Biol 8: R10.en_US
dc.identifier.citedreferenceReen, F.J., Almagro‐Moreno, S., Ussery, D., and Boyd, E.F. ( 2006 ) The genomic code: inferring Vibrionaceae niche specialization. Nat Rev Microbiol 4: 697 – 704.en_US
dc.identifier.citedreferenceRio, R.V.M., Symula, R.E., Wang, J., Lohs, C., Wu, Y., Snyder, A.K., et al. ( 2012 ) Insight into the transmission biology of species‐specific functional capabilities of Tsetse (Diptera: Glossinidae) obligate symbiont Wigglesworthia. MBio 3: e00240 – 11.en_US
dc.identifier.citedreferenceRuby, E.G., Urbanowski, M., Campbell, J., Dunn, A., Faini, M., Gunsalus, R., et al. ( 2005 ) Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. Proc Natl Acad Sci USA 102: 3004 – 3009.en_US
dc.identifier.citedreferenceSachs, J.L., Essenberg, C.J., and Turcotte, M.M. ( 2011 ) New paradigms for the evolution of beneficial infections. Trends Ecol Evol 26: 202 – 209.en_US
dc.identifier.citedreferenceSwofford, D.L. ( 1998 ) PAUP* 4.0b10: Phylogenetic analysis using parsimony. Sunderland, MA, USA: Sinauer.en_US
dc.identifier.citedreferenceThompson, J.R., Pacocha, S., Pharino, C., Klepac‐Ceraj, V., Hunt, D.E., Benoit, J., et al. ( 2005 ) Genotypic diversity within a natural coastal bacterioplankton population. Science 307: 1311 – 1313.en_US
dc.identifier.citedreferenceToft, C., and Fares, M.A. ( 2008 ) The evolution of the flagellar assembly pathway in endosymbiotic bacterial genomes. Mol Biol Evol 25: 2069 – 2076.en_US
dc.identifier.citedreferenceToh, H., Weiss, B.L., Perkin, S.A.H., Yamashita, A., Oshima, K., Hattori, M., and Aksoy, S. ( 2012 ) Massive genome erosion and functional adaptations provide insights into the symbiotic lifestyle of Sodalis glossinidius in the tsetse host. Genome Res 16: 149 – 156.en_US
dc.identifier.citedreferenceUrbanczyk, H., Ogura, Y., Hendry, T.A., Gould, A.L., Kiwaki, N., Atkinson, J.T., et al. ( 2011 ) Genome sequence of Photobacterium mandapamensis svers. 1.1, the bioluminescent symbiont of the cardinalfish Siphamia versicolor. J Bacteriol 193: 3144 – 3145.en_US
dc.identifier.citedreferenceWernegreen, J.J., and Funk, D.J. ( 2004 ) Mutation exposed: a neutral explanation for extreme base composition of an endosymbiont genome. J Mol Evol 59: 849 – 858.en_US
dc.identifier.citedreferenceWernegreen, J.J., and Moran, N.A. ( 1999 ) Evidence for genetic drift in endosymbionts (Buchnera): analyses of protein‐coding genes. Mol Biol Evol 16: 83 – 97.en_US
dc.identifier.citedreferenceWier, A.M., Nyholm, S.V., Mandel, M.J., Massengo‐Tiasse, R.P., Schaefer, A.L., Koroleva, I., et al. ( 2010 ) Transcriptional patterns in both host and bacterium underlie a daily rhythm of anatomical and metabolic change in a beneficial symbiosis. Proc Natl Acad Sci USA 107: 2259 – 2264.en_US
dc.identifier.citedreferenceWoolfit, M., and Bromham, L. ( 2003 ) Increased rates of sequence evolution in endosymbiotic bacteria and fungi with small effective population sizes. Mol Biol Evol 20: 1545 – 1555.en_US
dc.identifier.citedreferenceYu, X.J., Walker, D.H., Liu, Y., and Zhang, L.H. ( 2009 ) Amino acid biosynthesis deficiency in bacteria associated with human and animal hosts. Infect Genet Evol 9: 514 – 517.en_US
dc.identifier.citedreferenceMoran, N.A., and Plague, G.R. ( 2004 ) Genomic changes following host restriction in bacteria. Curr Opin Genet Dev 14: 627 – 633.en_US
dc.identifier.citedreferenceBaldwin, C.C., and Johnson, G.D. ( 1995 ) A larva of the Atlantic flashlight fish, Kryptophanaron alfredi (Beryciformes: Anomalopidae), with a comparison of beryciform and stephanoberyciform larvae. Bull Mar Sci 56: 1 – 24.en_US
dc.identifier.citedreferenceBenson, D.A., Cavanaugh, M., Clark, K., Karsh‐Mizrachi, I., Lipman, D.J., Ostell, J., and Sayers, E.W. ( 2013 ) GenBank. Nucleic Acids Res 41: D36 – D42.en_US
dc.identifier.citedreferenceBright, M., and Bulgheresi, S. ( 2010 ) A complex journey: transmission of microbial symbionts. Nat Rev Microbiol 8: 218 – 230.en_US
dc.identifier.citedreferenceCarver, T.J., Rutherford, K.M., Berriman, M., Rajandream, M.A., Barrell, B.G., and Parkhill, J. ( 2005 ) ACT: the Artemis comparison tool. Bioinformatics 21: 3422 – 3423.en_US
dc.identifier.citedreferenceChevreux, B., Wetter, T., and Suhai, S. ( 1999 ) Genome sequence assembly using trace signals and additional sequence information. Comput Sci Biol Proc Ger Conf Bioinformatics (GCB) 99: pp. 45 – 56.en_US
dc.identifier.citedreferenceColin, P.L. ( 1989 ) Anomalopidae – lanterneyes, flashlightfishes. In The Larvae of Indo‐Pacific Shoreline Fishes. Leis, J.M., and Trnksi, T. (eds). Honolulu, HI, USA: University of Hawaii Press, pp. 83 – 87.en_US
dc.identifier.citedreferenceDale, C., Young, S.A., Haydon, D.T., and Welburn, S.C. ( 2001 ) The insect endosymbiont Sodalis glossinidius utilizes a type III secretion system for cell invasion. Proc Natl Acad Sci USA 98: 1883 – 1888.en_US
dc.identifier.citedreferenceDick, G.J., Andersson, A.F., Baker, B.J., Sheri, L., Yelton, A.P., and Banfield, J.F. ( 2009 ) Community‐wide analysis of microbial genome sequence signatures. Genome Biol 10: R85.en_US
dc.identifier.citedreferenceDunlap, P.V. ( 2009 ) Microbial bioluminescence. In Encyclopedia of Microbiology. Schaechter, M. (ed.). Oxford, UK: Elsevier, pp. 45 – 61.en_US
dc.identifier.citedreferenceDunlap, P.V., Ast, J.C., Kimura, S., Fukui, A., Yoshino, T., and Endo, H. ( 2007 ) Phylogenetic analysis of host‐symbiont specificity and codivergence in bioluminescent symbiosis. Cladistics 23: 507 – 532.en_US
dc.identifier.citedreferenceDunlap, P.V., Davis, K.M., Tomiyama, T., Fujino, M., and Fukui, A. ( 2008 ) Developmental and microbiological analysis of the inception of bioluminescent symbiosis in the marine fish Nuchequula nuchalis (Perciformes: Leiognathidae). Appl Environ Microbiol 74: 7471 – 7481.en_US
dc.identifier.citedreferenceDunlap, P.V., Kojima, Y., Nakamura, S., and Nakamura, M. ( 2009 ) Inception of formation and early morphogenesis of the bacterial light organ of the sea urchin cardinalfish, Siphamia versicolor (Perciformes: Apogonidae). Mar Biol 156: 2011 – 2020.en_US
dc.identifier.citedreferenceDunlap, P.V., Gould, A.L., Wittenrich, M.L., and Nakamura, M. ( 2012 ) Initiation of bioluminescent symbiosis in the bacterially luminous coral reef fish Siphamia versicolor (Perciformes: Apogonidae). J Fish Biol 81: 1340 – 1356.en_US
dc.identifier.citedreferenceGraf, J., and Ruby, E.G. ( 1998 ) Host‐derived amino acids support the proliferation of symbiotic bacteria. Proc Natl Acad Sci USA 95: 1818 – 1822.en_US
dc.identifier.citedreferenceHaft, D.H., Selengut, J.D., Richter, R.A., Harkins, D., Basu, M.K., and Beck, E. ( 2013 ) TIGRFAMs and genome properties in 2013. Nucleic Acids Res 41: D387 – D395.en_US
dc.identifier.citedreferenceHaygood, M.G. ( 1993 ) Light organ symbioses in fishes. Crit Rev Microbiol 19: 191 – 216.en_US
dc.identifier.citedreferenceHaygood, M.G., and Distel, D.L. ( 1993 ) Bioluminescent symbionts of flashlight fishes and deep‐sea anglerfishes form unique lineages related to the genus Vibrio. Nature 363: 154 – 156.en_US
dc.identifier.citedreferenceHaygood, M.G., Tebo, B.M., and Nealson, K.H. ( 1984 ) Luminous bacteria of a monocentrid fish ( Monocentris japonicus ) and 2 anomalopid fishes ( Photoblepharon palpebratus and Kryptophanaron alfredi ) – populations sizes and growth within the light organs, and rates of release into the seawater. Mar Biol 78: 249 – 254.en_US
dc.identifier.citedreferenceHendry, T.A., and Dunlap, P.V. ( 2011 ) The uncultured luminous symbiont of Anomalops katoptron (Beryciformes: Anomalopidae) represents a new bacterial genus. Mol Phylogenet Evol 61: 834 – 843.en_US
dc.identifier.citedreferenceHerring, P.J., and Morin, J.G. ( 1978 ) Bioluminescence in fishes. In Bioluminescence in action. Herring, P.J. (ed.). London, UK: Academic Press, pp. 273 – 329.en_US
dc.identifier.citedreferenceHosokawa, T., Kikuchi, Y., Nikoh, N., Meng, X.‐Y., Hironaka, M., and Fukatsu, T. ( 2010 ) Phylogenetic position and peculiar genetic traits of a midgut bacterial symbiont of the stinkbug Parastrachia japonensis. Appl Environ Microbiol 76: 4130 – 4135.en_US
dc.identifier.citedreferenceKanehisa, M., Goto, S., Sato, Y., Furmichi, M., and Tanabe, M. ( 2012 ) KEGG for integration and interpretation of large‐scale molecular data sets. Nucleic Acids Res 40: D109 – D114.en_US
dc.identifier.citedreferenceKessel, M. ( 1977 ) The ultrastructure of the relationship between the luminous organ of the teleost fish Photoblepharon palpebratus and its symbiotic bacteria. Cytobiologie 15: 145 – 158.en_US
dc.identifier.citedreferenceKikuchi, Y., Hosokawa, T., Nikoh, N., Meng, X.‐Y., Kamagata, Y., and Fukatsu, T. ( 2009 ) Host‐symbiont co‐speciation and reductive genome evolution in gut symbiotic bacteria of acanthosomatid stinkbugs. BMC Biol 7: 2.en_US
dc.identifier.citedreferenceKonishi, Y., and Okiyama, M. ( 1997 ) Morphological development of four trachichthyoid larvae (Pisces: Beryciformes), with comments on trachichthyoid relationships. Bull Mar Sci 60: 66 – 88.en_US
dc.identifier.citedreferenceLauro, F.M., McDougald, D., Thomas, T., Timothy, J., Egan, S., Rice, S., et al. ( 2009 ) The genomic basis of trophic strategy in marine bacteria. Proc Natl Acad Sci USA 106: 15527 – 15533.en_US
dc.identifier.citedreferenceLee, K., and Ruby, E.G. ( 1994 ) Effect of the squid host on the abundance and distribution of symbiotic Vibrio fischeri in nature. Appl Environ Microbiol 60: 1565 – 1571.en_US
dc.identifier.citedreferenceLeis, J.M., and Bullock, S. ( 1986 ) The luminous cardinalfish Siphamia (Pisces, Apogonidae): development of larvae and the luminous organ. In Indo‐Pacific Fish Biology: Proceedings of the Second International Conference on Indo‐Pacific Fish. Uyeno, T., Arai, R., Taniuchi, T., and Matsuura, K. (eds). Tokyo, Japan: Ichthyological Society of Japan, pp. 703 – 714.en_US
dc.identifier.citedreferenceLin, B., Wang, Z., Malanoski, A.P., O'Grady, E.A., Wimpee, C.F., Vuddhakul, V., et al. ( 2010 ) Comparative genomic analyses identify the Vibrio harveyi genome sequenced strains BAA‐1116 and HY01 as Vibrio campbellii. Environ Microbiol Rep 2: 81 – 89.en_US
dc.identifier.citedreferenceMcCutcheon, J.P., and Moran, N.A. ( 2012 ) Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 10: 13 – 26.en_US
dc.identifier.citedreferenceMaezawa, K., Shigenobu, S., Taniguchi, H., Kubo, T., Aizawa, S., and Morioka, M. ( 2006 ) Hundreds of flagellar basal bodies cover the cell surface of the endosymbiotic bacterium Buchnera aphidicola sp. strain APS. J Bacteriol 188: 6539 – 6543.en_US
dc.identifier.citedreferenceMarkowitz, V.M., Chen, I.M., Palaniappan, K., Chu, K., Szeto, E., Grechkin, Y., et al. ( 2012 ) IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res 40: D115 – D122.en_US
dc.identifier.citedreferenceMeyer‐Rochow, V.B. ( 1976 ) Some observations on spawning and fecundity in luminescence fish Photoblepharon palpebratus. Mar Biol 37: 325 – 328.en_US
dc.identifier.citedreferenceMira, A., and Moran, N.A. ( 2002 ) Estimating population size and transmission bottlenecks in maternally transmitted endosymbiotic bacteria. Microb Ecol 44: 137 – 143.en_US
dc.identifier.citedreferenceMoran, N.A. ( 1996 ) Accelerated evolution and Muller's rachet in endosymbiotic bacteria. Proc Natl Acad Sci USA 93: 2873 – 2878.en_US
dc.identifier.citedreferenceMorin, J.G., Harrington, A., Nealson, K., Krieger, N., Baldwin, T.O., and Hastings, J.W. ( 1975 ) Light for all reasons – versatility in behavioral repertoire of flashlight fish. Science 190: 74 – 76.en_US
dc.identifier.citedreferenceNealson, K.N. ( 1979 ) Alternatives strategies of symbiosis of marine luminous fishes harboring light‐emitting bacteria. Trends Biochem Sci 4: 105 – 110.en_US
dc.identifier.citedreferenceNikoh, N., Hosokawa, T., Oshima, K., Hattori, M., and Fukatsu, T. ( 2011 ) Reductive evolution of bacterial genome in insect gut environment. Genome Biol Evol 3: 702 – 714.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.