Show simple item record

Simulation of magnetic cloud erosion during propagation

dc.contributor.authorManchester, W. B.en_US
dc.contributor.authorKozyra, J. U.en_US
dc.contributor.authorLepri, S. T.en_US
dc.contributor.authorLavraud, B.en_US
dc.date.accessioned2014-09-03T16:51:25Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2014-09-03T16:51:25Z
dc.date.issued2014-07en_US
dc.identifier.citationManchester, W. B.; Kozyra, J. U.; Lepri, S. T.; Lavraud, B. (2014). "Simulation of magnetic cloud erosion during propagation." Journal of Geophysical Research: Space Physics 119(7): 5449-5464.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108271
dc.description.abstractWe examine a three‐dimensional (3‐D) numerical magnetohydrodynamic (MHD) simulation describing a very fast interplanetary coronal mass ejection (ICME) propagating from the solar corona to 1 AU. In conjunction with its high speed, the ICME evolves in ways that give it a unique appearance at 1 AU that does not resemble a typical ICME. First, as the ICME decelerates far from the Sun in the solar wind, filament material at the back of the flux rope pushes its way forward through the flux rope. Second, diverging nonradial flows in front of the filament transport poloidal flux of the rope to the sides of the ICME. Third, the magnetic flux rope reconnects with the interplanetary magnetic field (IMF). As a consequence of these processes, the flux rope partially unravels and appears to evolve to an entirely unbalanced configuration. At the same time, filament material at the base of the flux rope moves forward and comes in direct contact with the shocked plasma in the CME sheath. We find evidence that such remarkable behavior has actually occurred when we examine a very fast CME that erupted from the Sun on 2005 January 20. In situ observations of this event near 1 AU show very dense cold material impacting the Earth following immediately behind the CME sheath. Charge state analysis shows this dense plasma is filament material. Consistent with the simulation, we find the poloidal flux ( B z ) to be entirely unbalanced, giving the appearance that the flux rope has eroded. The dense solar filament material and unbalanced positive IMF B z produced a number of anomalous features in a moderate magnetic storm already underway, which are described in a companion paper by Kozyra et al. (2014). Key Points Filament material can move to the front of ICMEs Flux rope erosion can occur by azimuthal transport of poloidal fluxen_US
dc.publisherTata Institute of Fundamental Researchen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherCMEen_US
dc.subject.otherSolar Winden_US
dc.subject.otherMHDen_US
dc.titleSimulation of magnetic cloud erosion during propagationen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108271/1/jgra51093.pdf
dc.identifier.doi10.1002/2014JA019882en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceRiley, P., et al. ( 2004 ), Fitting flux ropes to a global MHD solution: A comparison of techniques, J. Atmos. Sol. Terr. Phys., 66, 1321 – 1331.en_US
dc.identifier.citedreferencePohjollainen, S., L. van Driel‐Gesztelyi, J. L. Culhane, P. K. Manoharan, and H. A. Elliott ( 2007 ), CME propagation characteristics from radio observations, Sol. Phys., 244, 167 – 188.en_US
dc.identifier.citedreferencePowell, K. G., P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. De Zeeuw ( 1999 ), A solution‐adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys., 154, 284 – 309.en_US
dc.identifier.citedreferenceRidley, A. J., D. L. DeZeeuw, W. B. Manchester IV, and K. C. Hansen ( 2006 ), The magnetospheric and ionospheric response to a very strong interplanetary shock and coronal mass ejection, Adv. Space Res., 38, 263 – 272.en_US
dc.identifier.citedreferenceRodriguez, L., A. N. Zhukov, D. Odstrcil, V. J. Pizzo, and D. F. Webb ( 2008 ), Evidence of posteruption reconnection associated with coronal mass ejections in the solar wind, Astrophys. J., 578, 972 – 978.en_US
dc.identifier.citedreferenceRuffenach, A., et al. ( 2012 ), Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation, J. Geophys. Res., 117, A09101, doi: 10.1029/2012JA017624.en_US
dc.identifier.citedreferenceSchwenn, R., H. Rosenbauer, and K. H. Muhlhauser ( 1980 ), Singly ionized helium in the driver gas of an interplanetary shock wave, Geophys. Res. Lett., 7 ( 3 ), 201 – 204.en_US
dc.identifier.citedreferenceSharma, R., and N. Srivastava ( 2012 ), Presence of solar filament plasma detected in interplanetary coronal mass ejections by in situ spacecraft, J. Space Weather Space Clim., 2, A10, doi: 10.1051/swsc/2012010.en_US
dc.identifier.citedreferenceSharma, R., N. Srivastava, D. Chakrabarty, C. Möstl, and Q. Hu ( 2013 ), Interplanetary and geomagnetic consequences of 5 January 2005 CMEs associated with eruptive filaments, J. Geophys. Res. Space Physics, 118, 3954 – 3967, doi: 10.1002/jgra.50362.en_US
dc.identifier.citedreferenceSkoug, R. M., et al. ( 1999 ), A prolonged He+ enhancement within a coronal mass ejection in the solar wind, Geophys. Res. Lett., 26 ( 2 ), 161 – 164, doi: 10.1029/1998GL900207.en_US
dc.identifier.citedreferenceSokolov, I. V., B. van der Holst, R. Oran, C. Downs, I. I. Roussev, M. Jin, W. B. Manchester IV, R. M. Evans, and T. I. Gombosi ( 2013 ), Magnetohydrodynamic waves and coronal heating: unifying empirical and MHD turbulence models, Astrophys. J., 764, 23, doi: 10.1088/0004‐637X/764/1/23.en_US
dc.identifier.citedreferenceSchrijver, C. J., and A. M. Title ( 2011 ), Long‐range magnetic couplings between solar flares and coronal mass ejections observed by SDO and STEREO, J. Geophys. Res., 116, A04108, doi: 10.1029/2010JA016224.en_US
dc.identifier.citedreferenceSheeley, N. R., J. H. Walters, Y.‐M. Wang, and R. A. Howard ( 1999 ), Continuous tracking of coronal outflows: Two kinds of coronal mass ejections, J. Geophys Res., 104, 24,739 – 24,767.en_US
dc.identifier.citedreferenceTaubenschuss, U., N. V. Erkaev, H. K. Biernat, C. J. Farrugia, C. MoANstl, and U. V. Amerstorfer ( 2010 ), The role of magnetic handedness in magnetic cloud propagation, Ann. Geophys., 28 ( 5 ), 1075 – 1100, doi: 10.5194/angeo‐28‐1075‐2010.en_US
dc.identifier.citedreferenceThomsen, M. F., J. E. Borovsky, R. M. Skoug, and C. W. Smith ( 2003 ), Delivery of cold, dense plasma sheet material into the near‐Earth region, J. Geophys. Res., 108 ( A4 ), 1151, doi: 10.1029/2002JA009544.en_US
dc.identifier.citedreferenceTsurutani, B. T., W. D. Gonzalez, G. S. Lakhina, and S. Alex ( 2003 ), The extreme magnetic storm of 1–2 September 1859, J. Geophys. Res., 108 ( A7 ), 1268, doi: 10.1029/2002JA009504.en_US
dc.identifier.citedreferenceTsurutani, B., et al. ( 2004 ), Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields, J. Geophys. Res., 109, A08302, doi: 10.1029/2003JA010342.en_US
dc.identifier.citedreferenceVaisberg, O. L., and G. N. Zastenker ( 1976 ), Solar wind and magnetosheath observations at Earth during August 1972, Space Sci. Rev., 19, 687 – 702.en_US
dc.identifier.citedreferencevan der Holst, B., I. V. Sokolov, X. Meng, M. Jin, W. B. Manchester IV, G. Tóth, and T. I. Gombosi ( 2014 ), Alfvén Wave Solar Model (AWSoM): Coronal heating, Astrophys. J. Supp., 782, 81, doi: 10.1088/0004‐637X/782/2/81.en_US
dc.identifier.citedreferencevon Steiger, R., et al. ( 2000 ), Composition of quasi‐stationary solar wind flows from Ulysses/Solar Wind Ion Composition Spectrometer, J. Geophys. Res., 105, 27,217 – 27,238.en_US
dc.identifier.citedreferenceYao, S., E. Marsch, C.‐Y. Tu, and R. Schwenn ( 2010 ), Identification of prominence ejecta by the proton distribution function and magnetic fine structure in interplanetary coronal mass ejections in the inner heliosphere, J. Geophys. Res., 115, A05103, doi: 10.1029/2009JA014914.en_US
dc.identifier.citedreferenceZhang, J.‐C., M. W. Liemohn, M. F. Thomsen, J. U. Kozyra, M. H. Denton, and J. E. Borovsky ( 2006 ), A statistical comparison of hot‐ion properties at geosynchronous orbit during intense and moderate geomagnetic storms at solar maximum and minimum, J. Geophys. Res., 111, A07206, doi: 10.1029/2005JA011559.en_US
dc.identifier.citedreferenceBasu, S., K. M. Groves, H. C. Yeh, S.‐Y. Su, F. J. Rich, P. J. Sultan, and M. J. Keskinen ( 2001 ), Response of the equatorial ionosphere in the South Atlantic region to the great magnetic storm of July 15, 2000, Geophys. Res. Lett., 28 ( 18 ), 3577 – 3580.en_US
dc.identifier.citedreferenceBoteler, D. H., and G. J. van Beek ( 1999 ), August 4, 1972 revisited: A new look at the geomagnetic disturbance that caused the L4 cable system outage, Geophys. Res. Lett., 26 ( 5 ), 577 – 580.en_US
dc.identifier.citedreferenceBurlaga, L. F., E. Sittler, F. Mariani, and R. Schwenn ( 1981 ), Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations, J. Geophys. Res., 86 ( A8 ), 6673 – 6684, doi: 10.1029/JA86iA08p06673.en_US
dc.identifier.citedreferenceBurlaga, L. F., and K. W. Behannon ( 1982 ), Magnetic clouds: Voyager observations between 2 and 4 AU, Sol. Phys., 81, 181 – 192.en_US
dc.identifier.citedreferenceBurlaga, L. F., K. W. Behannon, and L. Klein ( 1987 ), Compound streams, magnetic clouds and major geomagnetic storms, J. Geophys. Res., 92 ( A6 ), 5725 – 5734, doi: 10.1029/JA092iA06p05725.en_US
dc.identifier.citedreferenceBurlaga, L. F., et al. ( 1998 ), A magnetic cloud containing prominence material: January 1997, J. Geophys. Res., 103 ( A1 ), 277 – 285.en_US
dc.identifier.citedreferenceCliver, E. W., J. Feynman, and H. B. Garrett ( 1990 ), An estimate of the maximum speed of the solar wind, 1938–1989, J. Geophys. Res., 95 ( A10 ), 17,103 – 17,112.en_US
dc.identifier.citedreferenceDasso, S., C. H. Mandrini, P. Démoulin, and M. L. Luoni ( 2006 ), A new model‐independent method to compute magnetic helicity in magnetic clouds, Astron. Astrophys., 455, 349 – 359.en_US
dc.identifier.citedreferenceDémoulin, P. ( 2008 ), A review of the quantitative links between CMEs and magnetic clouds, Ann. Geophys., 26, 3113 – 3125.en_US
dc.identifier.citedreferenceDÚston, C., J. M. Bosqued, F. Cambou, V. V. Temnyi, G. N. Zastenker, O. L. Vaisberg, and E. G. Eroshenko ( 1977 ), Energetic properties of interplanetary plasma at the Earth's orbit following the August 4, 1972 flare, Sol. Phys., 51, 217 – 229.en_US
dc.identifier.citedreferenceFoullon, C., C. J. Owen, S. Dasso, L. M. Green, I. Dandouras, H. A. Elliott, A. N. Fazakerley, Y. V. Bogdanova, and N. U. Crooker ( 2007 ), Multi‐spacecraft study of the 21 January 2005 ICME evidence of current sheet substructure near the periphery of a strongly expanding, fast magnetic cloud, Sol. Phys., 244, 139 – 165.en_US
dc.identifier.citedreferenceGibson, S., and B. C. Low ( 1998 ), A time‐dependent three‐dimensional magnetohydrodynamic model of the coronal mass ejection, Astrophys. J., 493, 460 – 473.en_US
dc.identifier.citedreferenceGloeckler, G., et al. ( 1998 ), Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft, Space Sci. Rev., 86, 497 – 539.en_US
dc.identifier.citedreferenceGopalswamy, N., et al. ( 1998 ), On the relationship between coronal mass ejections and magnetic clouds, Geophys. Res. Lett., 25, 2485 – 2488.en_US
dc.identifier.citedreferenceGopalswamy, N., H. Xie, S. Yashiro, and I. Usoskin ( 2005 ), Coronal mass ejections and ground level enhancements, in Proceedings of the 29th International Cosmic Ray Conference, August 3‐10, 2005, Pune, India, vol. 1, edited by B. Sripathi Acharya et al., Tata Institute of Fundamental Research, Mumbai.en_US
dc.identifier.citedreferenceGrechnev, V. V., et al. ( 2008 ), An extreme solar event of 20 January 2005: Properties of the flare and the origin of energetic particles, Sol. Phys., 252, 149 – 177.en_US
dc.identifier.citedreferenceGroth, C. P. T., D. L. DeZeeuw, T. I. Gombosi, and K. G. Powell ( 2000 ), Global three‐dimensional MHD simulation of a space weather event: CME formation, interplanetary propagation, and interaction with the magnetosphere, J. Geophys. Res., 105, 25,053 – 25,078.en_US
dc.identifier.citedreferenceGruesbeck, J. R., S. T. Lepri, T. H. Zurbuchen, and S. K. Antiochos ( 2011 ), Constraints on coronal mass ejection evolution from in situ observations of ionic charge states, Astrophys. J., 730, 103 – 111.en_US
dc.identifier.citedreferenceHundhausen, A. J., H. E. Gilbert, and S. J. Bame ( 1968 ), Ionization state of the interplanetary plasma, J. Geophys. Res., 73, 5485 – 5493.en_US
dc.identifier.citedreferenceHundhausen, A. J. ( 1993 ), Sizes and locations of coronal mass ejections: SMM observations from 1980 and 1094–1989, J. Geophys Res., 98, 13,177 – 13,200.en_US
dc.identifier.citedreferenceJackson, B. V., P. P. Hick, A. Buffington, M. M. Bisi, J. M. Clover, M. S. Hamilton, M. Tokumaru, and K. Fujiki ( 2010 ), 3D reconstruction of density enhancements behind interplanetary shocks from solar mass ejection imager white‐light observations, in AIP Conf. Proc., CP1216, Twelfth International Solar Wind Conference, edited by M. Maksimovic et al., American Institute of Physics, College Park, Md.en_US
dc.identifier.citedreferenceJin, M., et al. ( 2012 ), A global two‐temperature corona and inner heliosphere model: A comprehensive validation study, Astrophys. J., 745, 6, doi: 10.1088/0004‐637X/745/1/6.en_US
dc.identifier.citedreferenceJones, R. A., A. R. Breen, R. A. Fallows, A. Canals, M. M. Bisi, and G. Lawrence ( 2007 ), Interaction between coronal mass ejections and the solar wind, J. Geophys. Res., 112, A08107, doi: 10.1029/2006JA011875.en_US
dc.identifier.citedreferenceKarpen, J. T., and S. K. Antiochos ( 2008 ), Condensation formation by impulsive heating in prominences, Astrophys. J., 676, 658 – 671.en_US
dc.identifier.citedreferenceKo, Y., G. Gloeckler, C. M. S. Cohen, and A. B. Galvin ( 1999 ), Solar wind ionic charge states during the Ulysses pole‐to‐pole pass, J. Geophys. Res., 104, 17,005 – 17,019.en_US
dc.identifier.citedreferenceKozyra, J. U., W. B. Manchester IV, C. P. Escoubet, S. T. Lepri, M. W. Liemohn, W. D. Gonzalez, M. W. Thomsen, and B. T. Tsurutani ( 2013 ), Earth's collision with a solar filament on 21 January 2005: Overview, J. Geophys. Res. Space Physics, 118, 5967 – 5978, doi: 10.1002/jgra.50567.en_US
dc.identifier.citedreferenceKozyra, J. U., et al. ( 2014 ), The Earth's interaction with a solar filament on 21 January 2005: Geospace consequences, J. Geophys. Res. Space Phys., doi: 10.1002/2013JA019748, in press.en_US
dc.identifier.citedreferenceLavraud, B., A. Ruffenach, A. P. Rouillard, P. Kajdic, W. B. Manchester, and N. Lugaz ( 2014 ), Geo‐effectiveness and radial dependence of magnetic cloud erosion by magnetic reconnection, J. Geophys. Res. Space Physics, 119, 26 – 35, doi: 10.1002/2013JA019154.en_US
dc.identifier.citedreferenceLee, J.‐Y., and J. C. Raymond ( 2012 ), Low ionization state plasma in coronal mass ejections, Astrophys. J., 758, 116, doi: 10.1088/0004‐637X/758/2/116.en_US
dc.identifier.citedreferenceLepri, S. T., and T. H. Zurbuchen ( 2010 ), Direct observational evidence of filament material within interplanetary coronal mass ejections, Astrophys. J., 723, L22 – L27.en_US
dc.identifier.citedreferenceLi, X., M. Temerin, B. T. Tsurutani, and S. Alex ( 2006 ), Modeling of 1–2 September 1859 super magnetic storm, Adv. Space Res., 38, 273 – 279.en_US
dc.identifier.citedreferenceLow, B. C. ( 2001 ), Coronal mass ejections, magnetic flux ropes, and solar magnetism, J. Geophys. Res., 106, 25,141 – 25,163.en_US
dc.identifier.citedreferenceLynch, B. J., A. A. Reinard, T. Mulligan, K. K. Reeves, C. E. Rakowski, J. C. Allred, Y. Li, J. M. Laming, P. J. MacNeice, and J. A. Linker ( 2011 ), Ionic composition structure of coronal mass ejections in axisymmetric magnetohydrodynamic models, Astrophys. J., 740, 112, doi: 10.1088/0004‐637X/740/2/112.en_US
dc.identifier.citedreferenceLugaz, N., W. B. Manchester IV, and T. I. Gombosi ( 2005 ), The evolution of coronal mass ejection density structures, Astrophys. J., 627, 1019 – 1030, doi: 10.1086/430465.en_US
dc.identifier.citedreferenceManchester, W. B., IV, T. I. Gombsi, I. I. Roussev, D. L. DeZeeuw, I. V. Sokolov, K. G. Powell, G. Tóth, and M. Opher ( 2004a ), Three‐dimensional MHD simulation of a flux rope driven CME, J. Geophys. Res., 109, A01102, doi: 10.1029/2002JA009672.en_US
dc.identifier.citedreferenceManchester, W. B., IV, T. I. Gombsi, I. I. Roussev, A. J. Ridley, D. L. DeZeeuw, I. V. Sokolov, K. G. Powell, and G. Tóth ( 2004b ), Modeling a space weather event from the Sun to the Earth: CME generation and propagation, J. Geophys. Res., 109, A02107, doi: 10.1029/2003JA010150.en_US
dc.identifier.citedreferenceManchester, W., IV, T. I. Gombosi, D. L. DeZeeuw, I. V. Sokolov, I. I. Roussev, K. G. Powell, G. Tóth, and T. H. Zurbuchen ( 2005 ), CME shock and sheath structures relevant to particle acceleration, Astrophys. J., 622, 1225 – 1239, doi: 10.1086/427768.en_US
dc.identifier.citedreferenceManchester, W., IV, A. J. Ridley, T. I. Gombosi, and D. L. DeZeeuw ( 2006 ), Modeling the Sun‐to‐Earth propagation of a very fast CME, Adv. Space Res., 38, 253 – 262.en_US
dc.identifier.citedreferenceOwens, M., P. Demoulin, N. P. Savani, B. Lavraud, and A. Ruffenach ( 2012 ), Implications of non‐cylindrical flux ropes for magnetic cloud reconstruction techniques and the interpretation of double flux rope events, Sol. Phys., 278, 435 – 446.en_US
dc.identifier.citedreferenceParker, E. N. ( 1963 ), Interplanetary Dynamical Processes, Wiley‐Interscience, New York.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.