Show simple item record

Mars photoelectron energy and pitch angle dependence on intense lower atmospheric dust storms

dc.contributor.authorXu, Shaosuien_US
dc.contributor.authorLiemohn, Michael W.en_US
dc.contributor.authorMitchell, David L.en_US
dc.contributor.authorSmith, Michael D.en_US
dc.date.accessioned2014-09-03T16:51:31Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2014-09-03T16:51:31Z
dc.date.issued2014-07en_US
dc.identifier.citationXu, Shaosui; Liemohn, Michael W.; Mitchell, David L.; Smith, Michael D. (2014). "Mars photoelectron energy and pitch angle dependence on intense lower atmospheric dust storms." Journal of Geophysical Research: Planets 119(7): 1689-1706.en_US
dc.identifier.issn2169-9097en_US
dc.identifier.issn2169-9100en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108280
dc.description.abstractWe have conducted a survey of the Mars Global Surveyor (MGS) electron data across all the pitch angles of 12 usable energy bins (11–746 eV) for dayside photoelectron observations over regions of strong crustal fields. Studies have shown that solar EUV flux is the main controlling factor, but dust storms play an important role as well. Our study of different energies and pitch angles has shown that the unusual bimodal solar flux dependence is not a common feature but mainly found in low energies and a few bins of higher‐energy channels. By multiplying time‐history dust opacity with a solar EUV proxy as a new controlling function, the statistically significant increase of the correlation of photoelectron flux against this function indicates that dust storms have a long‐lasting influence on high‐altitude photoelectron fluxes, especially at low energies and the pitch angle source regions of high‐energy channels. The correlation increases experienced by the pitch angle source regions of all examined energy channels suggest that dust storms' influence most likely happens in the thermosphere‐ionosphere source region of the photoelectrons, rather than at exospheric altitudes at or above MGS. Furthermore, by isolating the global‐scale dust storm in Mars year 25 (2001) from the rest, the results suggest that this storm is entirely responsible for the second solar flux‐dependent trend. While not excluding the possibility of this phenomenon being a one‐time event, we hypothesize that there is a threshold of dust opacity at which the low‐altitude dust's influence on high‐altitude photoelectron fluxes begins to be significant. Key Points Dust storms' influence is strongest in the thermosphere‐ionosphere source region Hypothesize a dust opacity threshold for a long‐lived effect on the ionosphereen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherCambridge Univ. Pressen_US
dc.subject.otherPhotoelectronsen_US
dc.subject.otherThermosphereen_US
dc.subject.otherIonosphereen_US
dc.subject.otherMarsen_US
dc.subject.otherDust Stormsen_US
dc.subject.otherTime‐History Effecten_US
dc.titleMars photoelectron energy and pitch angle dependence on intense lower atmospheric dust stormsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108280/1/fs01_fism010nm.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108280/2/fs02_fism050nm.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108280/3/jgre20282.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108280/4/fs03_fism50100nm.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108280/5/README.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108280/6/fs04.pdf
dc.identifier.doi10.1002/2013JE004594en_US
dc.identifier.sourceJournal of Geophysical Research: Planetsen_US
dc.identifier.citedreferenceLillis, R. J., S. W. Bougher, F. González‐Galindo, F. Forget, M. D. Smith, and P. C. Chamberlin ( 2010a ), Four Martian years of nightside upper thermospheric mass densities derived from electron reflectometry: Method extension and comparison with GCM simulations, J. Geophys. Res., 115, E07014, doi: 10.1029/2009JE003529.en_US
dc.identifier.citedreferenceGierasch, P. J., and R. M. Goody ( 1972 ), The effect of dust on the temperature of the Martian atmosphere, J. Atmos. Sci., 29, 400 – 402, doi: 10.1175/1520‐0469(1972).en_US
dc.identifier.citedreferenceGuzewich, S. D., E. R. Talaat, A. D. Toigo, D. W. Waugh, and T. H. McConnochie ( 2013 ), High‐altitude dust layers on Mars: Observations with the thermal emission spectrometer, J. Geophys. Res. Planets, 118, 1177 – 1194, doi: 10.1002/jgre.20076.en_US
dc.identifier.citedreferenceHaberle, R. M., C. B. Leovy, and J. B. Pollack ( 1982 ), Some effects of global dust storms on the atmospheric circulation of Mars, Icarus, 50 ( 2 ), 322 – 367.en_US
dc.identifier.citedreferenceHantsch, M., and S. Bauer ( 1990 ), Solar control of the Mars ionosphere, Planet. Space Sci., 38 ( 4 ), 539 – 542.en_US
dc.identifier.citedreferenceKeating, G., et al. ( 1998 ), The structure of the upper atmosphere of Mars: In situ accelerometer measurements from Mars Global Surveyor, Science, 279 ( 5357 ), 1672 – 1676.en_US
dc.identifier.citedreferenceKhazanov, G., and M. Liemohn ( 1995 ), Nonsteady state ionosphere‐plasmasphere coupling of superthermal electrons, J. Geophys. Res., 100 ( A6 ), 9669 – 9681.en_US
dc.identifier.citedreferenceLiemohn, M. W., D. L. Mitchell, A. F. Nagy, J. L. Fox, T. W. Reimer, and Y. Ma ( 2003 ), Comparisons of electron fluxes measured in the crustal fields at Mars by the MGS magnetometer/electron reflectometer instrument with a B field‐dependent transport code, J. Geophys. Res., 108 ( E12 ), 5134, doi: 10.1029/2003JE002158.en_US
dc.identifier.citedreferenceLiemohn, M. W., et al. ( 2006 ), Numerical interpretation of high‐altitude photoelectron observations, Icarus, 182 ( 2 ), 383 – 395.en_US
dc.identifier.citedreferenceLiemohn, M. W., A. Dupre, S. W. Bougher, M. Trantham, D. L. Mitchell, and M. D. Smith ( 2012 ), Time‐history influence of global dust storms on the upper atmosphere at Mars, Geophys. Res. Lett., 39, L11201, doi: 10.1029/2012GL051994.en_US
dc.identifier.citedreferenceLillis, R. J., S. W. Bougher, D. L. Mitchell, D. A. Brain, R. P. Lin, and M. H. Acuña ( 2008 ), Continuous monitoring of nightside upper thermospheric mass densities in the Martian southern hemisphere over 4 Martian years using electron reflectometry, Icarus, 194 ( 2 ), 562 – 574.en_US
dc.identifier.citedreferenceLillis, R. J., D. A. Brain, S. L. England, P. Withers, M. O. Fillingim, and A. Safaeinili ( 2010b ), Total electron content in the Mars ionosphere: Temporal studies and dependence on solar EUV flux, J. Geophys. Res., 115, A11314, doi: 10.1029/2010JA015698.en_US
dc.identifier.citedreferenceMedvedev, A. S., T. Kuroda, and P. Hartogh ( 2011 ), Influence of dust on the dynamics of the Martian atmosphere above the first scale height, Aeolian Res., 3 ( 2 ), 145 – 156.en_US
dc.identifier.citedreferenceMitchell, D., R. Lin, C. Mazelle, H. Reme, P. Cloutier, J. Connerney, M. Acuña, and N. Ness ( 2001 ), Probing Mars' crustal magnetic field and ionosphere with the MGS electron reflectometer, J. Geophys. Res., 106 ( E10 ), 23,419 – 23,427.en_US
dc.identifier.citedreferenceRutherford, E. ( 1911 ), The scattering of α and β particles by matter and the structure of the atom, Philos. Mag., 21, 669 – 688.en_US
dc.identifier.citedreferenceSchunk, R., and A. Nagy ( 2009 ), Ionospheres: Physics, Plasma Physics, and Chemistry, 2nd ed., 628 pp., Cambridge Univ. Press, Cambridge, U. K.en_US
dc.identifier.citedreferenceSmith, M. D., B. J. Conrath, J. C. Pearl, and P. R. Christensen ( 2002 ), Thermal Emission Spectrometer observations of Martian planet‐encircling dust storm 2001a, Icarus, 157 ( 1 ), 259 – 263.en_US
dc.identifier.citedreferenceSmith, M. D. ( 2004 ), Interannual variability in TES atmospheric observations of Mars during 1999–2003, Icarus, 167 ( 1 ), 148 – 165.en_US
dc.identifier.citedreferenceSmith, M. ( 2006 ), TES atmospheric temperature, aerosol optical depth, and water vapor observations 1999–2004, in The Second Workshop on Mars Atmosphere Modelling and Observations, edited by F. Forget et al., 211 pp., IAA, Granada, Spain.en_US
dc.identifier.citedreferenceSmith, M. D. ( 2009 ), THEMIS observations of Mars aerosol optical depth from 2002–2008, Icarus, 202 ( 2 ), 444 – 452.en_US
dc.identifier.citedreferenceTracadas, P. W., M. T. Zuber, D. E. Smith, and F. G. Lemoine ( 2001 ), Density structure of the upper thermosphere of Mars from measurements of air drag on the Mars global surveyor spacecraft, J. Geophys. Res., 106 ( E10 ), 23,349 – 23,357.en_US
dc.identifier.citedreferenceTrantham, M., M. Liemohn, D. Mitchell, and J. Frank ( 2011 ), Photoelectrons on closed crustal field lines at Mars, J. Geophys. Res., 116, A07311, doi: 10.1029/2010JA016231.en_US
dc.identifier.citedreferenceWang, J.‐S., and E. Nielsen ( 2003 ), Behavior of the Martian dayside electron density peak during global dust storms, Planet. Space Sci., 51 ( 4 ), 329 – 338.en_US
dc.identifier.citedreferenceWithers, P., and R. Pratt ( 2013 ), An observational study of the response of the upper atmosphere of Mars to lower atmospheric dust storms, Icarus, 225, 378 – 389.en_US
dc.identifier.citedreferenceZou, H., R. J. Lillis, J. S. Wang, and E. Nielsen ( 2011 ), Determination of seasonal variations in the Martian neutral atmosphere from observations of ionospheric peak height, J. Geophys. Res., 116, E09004, doi: 10.1029/2011JE003833.en_US
dc.identifier.citedreferenceAcuña, M., et al. ( 1992 ), Mars observer magnetic fields investigation, J. Geophys. Res., 97 ( E5 ), 7799 – 7814.en_US
dc.identifier.citedreferenceBaird, D. T., R. H. Tolson, S. Bougher, and B. Steers ( 2007 ), Zonal wind calculations from Mars global surveyor accelerometer and rate data, J. Spacecr. Rockets, 44 ( 6 ), 1180 – 1187.en_US
dc.identifier.citedreferenceBarabash, S., et al. ( 2006 ), The analyzer of space plasmas and energetic atoms (ASPERA‐3) for the Mars express mission, Space Sci. Rev., 126 ( 1‐4 ), 113 – 164.en_US
dc.identifier.citedreferenceBell, J. M., S. W. Bougher, and J. R. Murphy ( 2007 ), Vertical dust mixing and the interannual variations in the Mars thermosphere, J. Geophys. Res., 112, E12002, doi: 10.1029/2006JE002856.en_US
dc.identifier.citedreferenceBougher, S., J. Murphy, and R. Haberle ( 1997 ), Dust storm impacts on the Mars upper atmosphere, Adv. Space Res., 19 ( 8 ), 1255 – 1260.en_US
dc.identifier.citedreferenceBougher, S., G. Keating, R. Zurek, J. Murphy, R. Haberle, J. Hollingsworth, and R. Clancy ( 1999 ), Mars Global Surveyor aerobraking: Atmospheric trends and model interpretation, Adv. Space Res., 23 ( 11 ), 1887 – 1897.en_US
dc.identifier.citedreferenceBougher, S. W., S. Engel, D. Hinson, and J. Murphy ( 2004 ), MGS radio science electron density profiles: Interannual variability and implications for the Martian neutral atmosphere, J. Geophys. Res., 109, E03010, doi: 10.1029/2003JE002154.en_US
dc.identifier.citedreferenceBougher, S., J. Bell, J. Murphy, M. Lopez‐Valverde, and P. Withers ( 2006 ), Polar warming in the Mars thermosphere: Seasonal variations owing to changing insolation and dust distributions, Geophys. Res. Lett., 33, L02203, doi: 10.1029/2005GL024059.en_US
dc.identifier.citedreferenceChamberlin, P. C., T. N. Woods, and F. G. Eparvier ( 2007 ), Flare Irradiance Spectral Model (FISM): Daily component algorithms and results, Space Weather, 5, S07005, doi: 10.1029/2007SW000316.en_US
dc.identifier.citedreferenceChamberlin, P. C., T. N. Woods, and F. G. Eparvier ( 2008 ), Flare Irradiance Spectral Model (FISM): Flare component algorithms and results, Space Weather, 6, S05001, doi: 10.1029/2007SW000372.en_US
dc.identifier.citedreferenceChristensen, P. R., et al. ( 1992 ), Thermal emission spectrometer experiment: Mars Observer mission, J. Geophys. Res., 97 ( E5 ), 7719 – 7734.en_US
dc.identifier.citedreferenceChristensen, P. R., et al. ( 2001 ), Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results, J. Geophys. Res., 106 ( E10 ), 23,823 – 23,871.en_US
dc.identifier.citedreferenceClancy, R. T., M. J. Wolff, B. A. Whitney, B. A. Cantor, M. D. Smith, and T. H. McConnochie ( 2010 ), Extension of atmospheric dust loading to high altitudes during the 2001 Mars dust storm: MGS TES limb observations, Icarus, 207 ( 1 ), 98 – 109.en_US
dc.identifier.citedreferenceEngland, S. L., and R. J. Lillis ( 2012 ), On the nature of the variability of the Martian thermospheric mass density: Results from electron reflectometry with Mars Global Surveyor, J. Geophys. Res., 117, E02008, doi: 10.1029/2011JE003998.en_US
dc.identifier.citedreferenceForbes, J. M., F. G. Lemoine, S. L. Bruinsma, M. D. Smith, and X. Zhang ( 2008 ), Solar flux variability of Mars' exosphere densities and temperatures, Geophys. Res. Lett., 35, L01201, doi: 10.1029/2007GL031904.en_US
dc.identifier.citedreferenceFurman, M., and M. Pivi ( 2003 ), Simulation of secondary electron emission based on a phenomenological probabilistic model, Lawrence Berkeley National Laboratory. [Available at http://escholarship.org/uc/item/5dj265n8.]en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.