Show simple item record

How important are the alpha‐proton relative drift and the electron heat flux for the proton heating of the solar wind in the inner heliosphere?

dc.contributor.authorBorovsky, Joseph E.en_US
dc.contributor.authorGary, S. Peteren_US
dc.date.accessioned2014-09-03T16:51:38Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2014-09-03T16:51:38Z
dc.date.issued2014-07en_US
dc.identifier.citationBorovsky, Joseph E.; Gary, S. Peter (2014). "How important are the alpha‐proton relative drift and the electron heat flux for the proton heating of the solar wind in the inner heliosphere?." Journal of Geophysical Research: Space Physics 119(7): 5210-5219.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108294
dc.description.abstractThis report explores the feasibility of explaining the observed proton heating in the inner heliosphere (1) by tapping the field‐aligned relative drift between alpha particles and protons in the solar wind plasma and (2) by tapping the strahl‐electron heat flux from the Sun. The observed reduction of the alpha‐proton drift kinetic energy from 0.3 to 1 AU and the observed reduction of electron heat flux from 0.3 to 1 AU are each about half of the energy needed to account for the observed heating of protons from 0.3 to 1 AU. A mechanism is identified to transfer the free energy of the alpha‐proton relative drift into proton thermal energy: the alpha‐proton magnetosonic instability. A mechanism is identified to transfer kinetic energy from the strahl‐electron heat flux into proton thermal energy: weak double layers. At the current state of knowledge, the plausibility of heating the solar wind protons via the alpha‐proton magnetosonic instability is high. The properties of the weak double layers that have been observed in the solar wind are not well known; more data analysis and plasma simulations are needed before the plausibility of heating the solar wind protons by the double‐layer mechanism can be evaluated. Key Points The energy in the alpha‐proton drift can account for half of the proton heating The solar wind heat flux can also account for half of the proton heating Mechanisms are identified for the energy transfer to proton heatingen_US
dc.publisherPlenum Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherInterplanetary Electric Fielden_US
dc.subject.otherDouble Layersen_US
dc.subject.otherMagnetosonicen_US
dc.subject.otherSolar Wind Heatingen_US
dc.titleHow important are the alpha‐proton relative drift and the electron heat flux for the proton heating of the solar wind in the inner heliosphere?en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108294/1/jgra51145.pdf
dc.identifier.doi10.1002/2014JA019758en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceNeugebauer, M., B. E. Goldstein, E. J. Smith, and W. C. Feldman ( 1996 ), Ulysses observations of differential alpha‐proton streaming in the solar wind, J. Geophys. Res., 101, 17,047 – 17,055, doi: 10.1029/96JA01406.en_US
dc.identifier.citedreferenceSchamel, H. ( 1982 ), Kinetic theory of phase space vortices and double layers, Physica Scripta, T2/1, 228.en_US
dc.identifier.citedreferencePagel, C., N. U. Crooker, D. E. Larson, S. W. Kahler, and M. J. Owen ( 2005 ), Understanding electron heat flux signatures in the solar wind, J. Geophys. Res., 110, A01103, doi: 10.1029/2004JA010767.en_US
dc.identifier.citedreferenceParker, E. N. ( 1969 ), Theoretical studies of the solar wind phenomenon, Space Sci. Rev., 9, 325 – 360.en_US
dc.identifier.citedreferencePierrard, V. ( 2012 ), Solar wind electron transport: Interplanetary electric field and heat conduction, Space Sci. Rev., 172, 315 – 324.en_US
dc.identifier.citedreferencePierrard, V., M. Maksimovic, and J. Lemaire ( 1999 ), Electron velocity distribution functions from the solar wind to the corona, J. Geophys. Res., 104, 17,021 – 17,032, doi: 10.1029/1999JA900169.en_US
dc.identifier.citedreferencePierrard, V., K. Issautier, N. Meyer‐Vernet, and J. Lemaire ( 2001 ), Collisionless model of the solar wind in a spiral magnetic field, Geophys. Res. Lett., 28, 223 – 226, doi: 10.1029/2000GL011888.en_US
dc.identifier.citedreferenceReddy, R. V., and G. S. Lakhina ( 1991 ), Ion acoustic double layers and solitons in auroral plasma, Planet. Space Sci., 39, 1343 – 1350.en_US
dc.identifier.citedreferenceRevathy, P. ( 1978 ), Magnetosonic instability driven by an alpha particle beam in the solar wind, J. Geophys. Res., 83, 5750 – 5752, doi: 10.1029/JA083iA12p05750.en_US
dc.identifier.citedreferenceRichardson, I. G., D. Berdichevsky, M. D. Desch, and C. J. Farrugia ( 2000 ), Solar‐cycle variation of low density solar wind during more than three solar cycles, Geophys. Res. Lett., 27, 3761 – 3764, doi: 10.1029/2000GL000077.en_US
dc.identifier.citedreferenceRosenbauer, H., R. Schwenn, E. Marsch, B. Meyer, H. Miggenrieder, M. D. Montgomery, K. H. Muhlhauser, W. Pilipp, W. Voges, and S. M. Zink ( 1977 ), A survey on initial results of the Helios plasma experiment, J. Geophys. Res., 42, 561 – 580.en_US
dc.identifier.citedreferenceSaito, S., and S. P. Gary ( 2007 ), All whistlers are not created equally: Scattering of strahl electrons in the solar wind via particle‐in‐cell simulations, Geophys. Res. Lett., 34, L01102, doi: 10.1029/2006GL028173.en_US
dc.identifier.citedreferenceSafranknova, J., Z. Nemecek, P. Cagas, L. Prech, J. Pavlu, G. N. Zastenker, M. O. Riazantseva, and I. V. Koloskova ( 2013 ), Short scale variations of the solar wind helium abundance, Astrophys. J, 778, 25.en_US
dc.identifier.citedreferenceSalem, C., D. Hubert, C. Lacombe, S. D. Bale, A. Mangeney, D. E. Larson, and R. P. Lin ( 2003a ), Electron properties and Coulomb collisions in the solar wind at 1 AU: WIND observations, Astrophys. J., 585, 1147.en_US
dc.identifier.citedreferenceSalem, C., C. Lacombe, A. Mangeney, P. J. Kellogg, and J.‐L. Bougeret ( 2003b ), Weak double layers in the solar wind and their relation to the interplanetary electric field, AIP Conf. Proc., 679, 513.en_US
dc.identifier.citedreferenceSchwartz, S. J., W. C. Feldman, and S. P. Gary ( 1981 ), The source of proton anisotropy in the high‐speed solar wind, J. Geophys. Res., 86, 541 – 546, doi: 10.1029/JA086iA02p00541.en_US
dc.identifier.citedreferenceShevchenko, V. I., and V. L. Galinsky ( 2010 ), Stability of the strahl electron distribution function and its dynamics, Nonlinear Proc. Geophys., 17, 593.en_US
dc.identifier.citedreferenceShevchenko, V. I., and V. L. Galinsky ( 2012 ), Stability of the strahl and solar burst distribution function and its dynamics, AIP Conf. Proc., 1436, 67.en_US
dc.identifier.citedreferenceStverak, S., M. Maksimovic, P. M. Travnicek, E. Marsch, A. N. Fazakerley, and E. E. Scime ( 2009 ), Radial evolution of nonthermal electron populations in the low‐latitude solar wind: Helios, Cluster, and Ulysses Observations, J. Geophys. Res., 114, A05104, doi: 10.1029/2008JA013883.en_US
dc.identifier.citedreferenceTu, C.‐Y. ( 1988 ), The damping of interplanetary Alfvenic fluctuations and the heating of the solar wind, J. Geophys. Res., 93, 7 – 20, doi: 10.1029/JA093iA01p00007.en_US
dc.identifier.citedreferenceTu, C.‐Y., and E. Marsch ( 1995 ), MHD structures, waves and turbulence in the solar wind, Space Sci. Rev., 73, 1 – 210.en_US
dc.identifier.citedreferenceVolokitin, A., and C. Krafft ( 2004 ), Interaction of suprathermal electron fluxes with lower hybrid waves, Phys. Plasmas, 11, 3165 – 3176.en_US
dc.identifier.citedreferenceLakhina, G. S. ( 1979 ), Electromagnetic lower hybrid instability driven by solar wind heat flux, Astrophys. Space Sci., 63, 511.en_US
dc.identifier.citedreferenceAsbridge, J. R., S. J. Bame, W. C. Feldman, and M. D. Montgomery ( 1976 ), Helium and hydrogen velocity differences in the solar wind, J. Geophys. Res., 81, 2719 – 2727, doi: 10.1029/JA081i016p02719.en_US
dc.identifier.citedreferenceBharuthram, R., E. Momoniat, F. Mahomed, S. V. Singh, and M. K. Islam ( 2008 ), Time evolution of ion‐acoustic double layers in an unmagnetized plasma, Phys. Plasmas, 15, 082304.en_US
dc.identifier.citedreferenceBorovsky, J. E. ( 1984 ), The production of ion conics by oblique double layers, J. Geophys. Res., 89, 2251 – 2266, doi: 10.1029/JA089iA04p02251.en_US
dc.identifier.citedreferenceBorovsky, J. E., and M. H. Denton ( 2010 ), Solar‐wind turbulence and shear: A superposed‐epoch analysis of corotating interaction regions at 1 AU, J. Geophys. Res., 115, A10101, doi: 10.1029/2009JA014966.en_US
dc.identifier.citedreferenceBorovsky, J. E., and S. P. Gary ( 2011 ), Electron‐ion Coulomb scattering and the electron Landau damping of Alfven waves in the solar wind, J. Geophys. Res., 116, A07101, doi: 10.1029/2010JA016403.en_US
dc.identifier.citedreferenceLakhina, G. S. ( 1985 ), Electromagnetic lower hybrid instability in the solar wind, Astrophys. Space Sci., 111, 325.en_US
dc.identifier.citedreferenceBorovsky, J. E., and J. T. Steinberg ( 2013 ), No evidence for the localized heating of the solar‐wind protons at velocity shear zones, J. Geophys. Res. Space Physics, 119, 1455 – 1462, doi: 10.1002/2013JA019746.en_US
dc.identifier.citedreferenceBruno, R., and V. Carbone ( 2013 ), The solar wind as a turbulence laboratory, Living Rev. Solar Phys., 10, 2. [Available at http://www.livingreview.org/lrsp‐2013‐2.]en_US
dc.identifier.citedreferenceBurton, M. E., M. Neugebauer, N. U. Crooker, R. von Steiger, and E. J. Smith ( 1999 ), Identification of trailing edge solar wind stream interfaces: A comparison of Ulysses plasma and compositional measurements, J. Geophys. Res., 104, 9925 – 9932, doi: 10.1029/JA104iA05p09925.en_US
dc.identifier.citedreferenceChen, F. F. ( 1974 ), Introduction to Plasma Physics, Sect. 4.6, Plenum Press, New York.en_US
dc.identifier.citedreferenceColeman, P. J. ( 1968 ), Turbulence, viscosity, and dissipation in the solar‐wind plasma, Astrophys. J., 153, 371.en_US
dc.identifier.citedreferenceDas, S. S., and S. Bujarbarua ( 1989 ), Weak ion acoustic double layers in a warm plasma, Contrib. Plasma Phys., 29, 211.en_US
dc.identifier.citedreferencede Koning, C. A., J. T. Gosling, R. M. Skoug, and J. T. Steinberg ( 2006 ), Widths of suprathermal pitch angle distributions during solar electron bursts: ACE observations, J. Geophys. Res., 111, A04101, doi: 10.1029/2005JA011326.en_US
dc.identifier.citedreferenceEyni, M., and R. Steinitz ( 1978 ), Cooling of slow solar wind protons from the Helios 1 experiment, J. Geophys. Res., 83, 4387 – 4388, doi: 10.1029/JA083iA09p04387.en_US
dc.identifier.citedreferenceFeldman, W. C. ( 1979 ), Solar wind plasma processes and transport, Rev. Geophys. Space Phys., 17, 1743 – 1751.en_US
dc.identifier.citedreferenceFitzenreiter, R. J., K. W. Ogilvie, D. J. Chornay, and J. Keller ( 1998 ), Observations of electron velocity distribution functions in the solar wind by the WIND spacecraft: High angular resolution strahl measurements, Geophys. Res. Lett., 25, 249 – 252, doi: 10.1029/97GL03703.en_US
dc.identifier.citedreferenceFreeman, J. W., and R. E. Lopez ( 1985 ), The cold solar wind, J. Geophys. Res., 90, 9885 – 9887, doi: 10.1029/JA090iA10p09885.en_US
dc.identifier.citedreferenceGao, X., Q. Lu, X. Li, C. Huang, and S. Wang ( 2012 ), Heating of the background plasma by obliquely propagating Alfven waves excited in the electromagnetic alpha/proton instability, Phys. Plasmas, 19, 032901.en_US
dc.identifier.citedreferenceGary, S. P., and S. Saito ( 2007 ), Broadening of solar wind strahl pitch‐angles by the electron/electron instability: Particle‐in‐cell simulations, Geophys. Res. Lett., 34, L14111, doi: 10.1029/2007GL030039.en_US
dc.identifier.citedreferenceGary, S. P., L. Yin, D. Winske, and D. B. Reisenfeld ( 2000a ), Electromagnetic alpha/proton instabilities in the solar wind, Geophys. Res. Lett., 27, 1355 – 1358, doi: 10.1029/2000GL000019.en_US
dc.identifier.citedreferenceGary, S. P., L. Yin, D. Winske, and D. B. Reisenfeld ( 2000b ), Alpha/proton magnetosonic instability in the solar wind, J. Geophys. Res., 105, 20,989 – 20,996, doi: 10.1029/2000JA000049.en_US
dc.identifier.citedreferenceGary, S. P., L. Yin, D. Winske, J. T. Steinberg, and R. M. Skoug ( 2006 ), Solar wind ion scattering by Alfven‐cyclotron fluctuations: Ion temperature anisotropies versus prelative alpha particle densities, New J. Phys., 8, 17.en_US
dc.identifier.citedreferenceGomberoff, L. ( 2006 ), Ion acoustic‐like waves triggered by nonlinear circularly polarized waves in the presence of an alpha particle beam, J. Geophys. Res., 111, A12111, doi: 10.1029/2006JA012053.en_US
dc.identifier.citedreferenceGomberoff, L., and J. A. Valdivia ( 2003 ), Ion cyclotron instability due to the thermal anisotropy of drifting ion species, J. Geophys. Res., 108 ( A1 ), 1050, doi: 10.1029/2002JA009576.en_US
dc.identifier.citedreferenceGosling, J. T., J. R. Asbridge, S. J. Bame, and W. C. Feldman ( 1978 ), Solar wind stream interfaces, J. Geophys. Res., 83, 1401 – 1412, doi: 10.1029/JA083iA04p01401.en_US
dc.identifier.citedreferenceGosling, J. T., D. N. Baker, S. J. Bame, W. C. Feldman, R. D. Zwickl, and E. J. Smith ( 1987 ), Bidirectional solar wind electron heat flux events, J. Geophys. Res., 92, 8519, doi: 10.1029/JA092iA08p08519.en_US
dc.identifier.citedreferenceHellinger, P., L. Matteini, S. Stverak, P. M. Travnicek, and E. Marsch ( 2011 ), Heating and cooling of protons in the fast solar wind between 0.3 and 1 AU: Helios revisited, J. Geophys. Res., 116, A09105, doi: 10.1029/2011JA016674.en_US
dc.identifier.citedreferenceHirshberg, J., J. R. Asbridge, and D. E. Robbins ( 1974 ), The Helium component of solar wind velocity streams, J. Geophys. Res., 79, 934 – 938, doi: 10.1029/JA079i007p00934.en_US
dc.identifier.citedreferenceHollweg, J. V., E. K. Kaghashvili, and B. D. G. Chandran ( 2013 ), Velocity‐shear‐induced mode coupling in the solar atmosphere and solar wind: Implications for plasma heating and MHD turbulence, Astrophys. J., 769, 142.en_US
dc.identifier.citedreferenceHu, Y. Q., R. Esser, and S. R. Habbal ( 1997 ), A fast solar wind model with anisotropic proton temperature, J. Geophys. Res., 102, 14,661 – 14,676, doi: 10.1029/97JA01040.en_US
dc.identifier.citedreferenceKennel, C. F. ( 1988 ), Shock structure in classical magnetohydrodynamics, J. Geophys. Res., 93, 8545 – 8557, doi: 10.1029/JA093iA08p08545.en_US
dc.identifier.citedreferenceKnorr, G., and C. K. Goertz ( 1974 ), Existence and stability of strong potential double layers, Astrophys. Space Sci., 31, 209.en_US
dc.identifier.citedreferenceKrafft, C., and A. Volokitin ( 2003 ), Interaction of suprathermal solar wind electron fluxes with sheared whistler waves: Fan instability, Ann. Geophys., 21, 1393.en_US
dc.identifier.citedreferenceLacombe, C., C. Salem, A. Mangeney, D. Hubert, C. Perche, J.‐L. Bougeret, P. J. Kellogg, and J.‐M. Bosqued ( 2002 ), Evidence for the interplanetary electric potential?, WIND observations of electrostatic fluctuations, Ann. Geophys., 20, 609.en_US
dc.identifier.citedreferenceLavraud, B., and J. E. Borovsky ( 2008 ), Altered solar wind‐magnetosphere interaction at low Mach numbers: Coronal mass ejections, J. Geophys. Res., 113, A00B08, doi: 10.1029/2008JA013192.en_US
dc.identifier.citedreferenceLemaire, J., and M. Scherer ( 1971 ), Kinetic models of the solar wind, J. Geophys. Res., 76, 7479 – 7490, doi: 10.1029/JA076i031p07479.en_US
dc.identifier.citedreferenceLemaire, J., and M. Scherer ( 1973 ), Kinetic models of the solar and polar winds, Rev. Geophys. Space Phys., 11, 427 – 468.en_US
dc.identifier.citedreferenceLi, X. ( 1999 ), Proton temperature anisotropy in the fast solar wind: A 16‐moment bi‐Maxwellian model, J. Geophys. Res., 104, 19,773 – 19,785, doi: 10.1029/1999JA900255.en_US
dc.identifier.citedreferenceLi, X., and S. R. Habbal ( 2000 ), Proton/alpha magnetosonic instability in the fast solar wind, J. Geophys. Res., 105, 7483 – 7489, doi: 10.1029/1999JA000259.en_US
dc.identifier.citedreferenceLu, Q., A. Du, and X. Li ( 2009 ), Two‐dimensional hybrid simulations of the oblique electromagnetic alpha/proton instability in the solar wind, Phys. Plasmas, 16, 042901.en_US
dc.identifier.citedreferenceMaksimovic, M., V. Pierrard, and J. F. Lemaire ( 1997 ), A kinetic model of the solar wind with Kappa distribution functions in the corona, Astron. Astrophys., 324, 725.en_US
dc.identifier.citedreferenceMaksimovic, M., et al. ( 2005 ), Radial evolution of the electron distribution functions in the fast solar wind between 0.3 and 1.5 AU, J. Geophys. Res., 110, A09104, doi: 10.1029/2005JA011119.en_US
dc.identifier.citedreferenceMangeney, A., C. Salem, C. Lacombe, J.‐L. Bougeret, C. Perche, R. Manning, P. J. Kellogg, K. Goetz, S. J. Monson, and J.‐M. Bosqued ( 1999 ), WIND observations of coherent electrostatic waves in the solar wind, Ann. Geophys., 17, 307 – 320.en_US
dc.identifier.citedreferenceMarkovskii, S. A., and J. V. Hollweg ( 2004 ), Intermittent heating of the solar corona by heat flux‐generated ion cyclotron waves, Astrophys. J., 609, 1112.en_US
dc.identifier.citedreferenceMarsch, E., and T. Chang ( 1982 ), Lower hybrid waves in the solar wind, Geophys. Res. Lett., 9, 1155 – 1158, doi: 10.1029/GL009i010p01155.en_US
dc.identifier.citedreferenceMarsch, E., and T. Chang ( 1983 ), Electromagnetic lower hybrid waves in the solar wind, J. Geophys. Res., 88, 6869 – 6880, doi: 10.1029/JA088iA09p06869.en_US
dc.identifier.citedreferenceMarsch, E., K.‐H. Muhlhauser, H. Rosenbauer, R. Schwenn, and F. M. Neubauear ( 1982 ), Solar wind helium ions: Observations of the Helios solar probes between 0.3 and 1 AU, J. Geophys. Res., 87, 35 – 51, doi: 10.1029/JA087iA01p00035.en_US
dc.identifier.citedreferenceMeyer‐Vernet, N., and K. Issautier ( 1998 ), Electron temperature in the solar wind: Generic radial variations from kinetic collisionless models, J. Geophys. Res., 103, 29,705 – 29,718, doi: 10.1029/98JA02853.en_US
dc.identifier.citedreferenceLaming, J. M. ( 2005 ), Lower hybrid wave electron heating in the fast wind, Astrophys. Space Sci., 298, 385.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.