Show simple item record

Aerosol radiative forcing from the 2010 Eyjafjallajökull volcanic eruptions

dc.contributor.authorFlanner, M. G.en_US
dc.contributor.authorGardner, A. S.en_US
dc.contributor.authorEckhardt, S.en_US
dc.contributor.authorStohl, A.en_US
dc.contributor.authorPerket, J.en_US
dc.date.accessioned2014-09-03T16:51:48Z
dc.date.availableWITHHELD_12_MONTHSen_US
dc.date.available2014-09-03T16:51:48Z
dc.date.issued2014-08-16en_US
dc.identifier.citationFlanner, M. G.; Gardner, A. S.; Eckhardt, S.; Stohl, A.; Perket, J. (2014). "Aerosol radiative forcing from the 2010 Eyjafjallajökull volcanic eruptions." Journal of Geophysical Research: Atmospheres 119(15): 9481-9491.en_US
dc.identifier.issn2169-897Xen_US
dc.identifier.issn2169-8996en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108312
dc.description.abstractAlthough the 2010 volcanic eruptions of Eyjafjallajökull did not exert a large climate forcing, several features of their emissions favored weaker aerosol cooling or stronger warming than commonly attributed to volcanic events. These features include a high ratio of fine ash to SO 2 , occurrence near reflective surfaces exposed to strong insolation, and the production of very little stratospheric sulfate. We derive plausible ranges of optical properties and top‐of‐atmosphere direct radiative forcing for aerosol emissions from these events and find that shortwave cooling from sulfate was largely offset by warming from ash deposition to cryospheric surfaces and longwave warming from atmospheric ash and sulfate. Shortwave forcing from atmospheric ash was slightly negative in the global mean under central estimates of optical properties, though this forcing term was uniquely sensitive to the simulated distribution of clouds. The forcing components sum to near climate‐neutral global mean 2010 instantaneous (−1.9 mWm −2 ) and effective (−0.5 mWm −2 ) radiative forcing, where the latter is elevated by high efficacy of snow‐deposited ash. Ranges in net instantaneous (−7.3 to +2.8 mWm −2 ) and effective (−7.2 to +4.9 mWm −2 ) forcing derived from sensitivity studies are dominated by uncertainty in ash shortwave absorptivity. Forcing from airborne ash decayed quickly, while sulfate forcing persisted for several weeks and ash deposits continued to darken snow and sea ice surfaces for months following the eruption. Despite small global forcing, monthly averaged net forcing exceeded 1 Wm −2 in some regions. These findings indicate that ash can be an important component of climate forcing from high‐latitude volcanic eruptions and in some circumstances may exceed sulfate forcing. Key Points We derive aerosol radiative forcing from the 2010 eruptions of Eyjafjallajokull Sulfate cooling was nearly offset by ash longwave and in‐snow shortwave heating We cannot rule out positive net forcing because of uncertainty in ash propertiesen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherIEEE, Lisbonen_US
dc.subject.otherEyjafjallajöKullen_US
dc.subject.otherClimateen_US
dc.subject.otherVolcanoen_US
dc.subject.otherAshen_US
dc.subject.otherSulfateen_US
dc.subject.otherForcingen_US
dc.titleAerosol radiative forcing from the 2010 Eyjafjallajökull volcanic eruptionsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108312/1/jgrd51600.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108312/2/ppr_ash_som_s2.pdf
dc.identifier.doi10.1002/2014JD021977en_US
dc.identifier.sourceJournal of Geophysical Research: Atmospheresen_US
dc.identifier.citedreferenceRayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan ( 2003 ), Global analysis of sea surface temperature, sea ice, and night marine air temperature since the late 19th century, J. Geophys. Res., 108 ( D14 ), 4407, doi: 10.1029/2002JD002670.en_US
dc.identifier.citedreferenceYoung, C. L., I. N. Sokolik, and J. Dufek ( 2012 ), Regional radiative impact of volcanic aerosol from the 2009 eruption of Mt. Redoubt, Atmos. Chem. Phys., 12 ( 8 ), 3699 – 3715, doi: 10.5194/acp‐12‐3699‐2012.en_US
dc.identifier.citedreferenceGrainger, R. G., D. M. Peters, G. E. Thomas, A. J. A. Smith, R. Siddans, E. Carboni, and A. Dudhia ( 2013 ), Measuring volcanic plume and ash properties from space, in Remote Sensing of Volcanoes and Volcanic Processes: Integrating Observation and Modelling, edited by D. Pyle and T. Mather, Geol. Soc. London Spec. Publ., 380, 293 – 320.en_US
dc.identifier.citedreferenceGudmundsson, M. T., et al. ( 2012 ), Ash generation and distribution from the April–May 2010 eruption of Eyjafjallajökull, Iceland, Sci. Rep., 2, 572, doi: 10.1038/srep00572.en_US
dc.identifier.citedreferenceHansen, J., and L. Nazarenko ( 2004 ), Soot climate forcing via snow and ice albedos, Proc. Natl. Acad. Sci., 101 ( 2 ), 423 – 428.en_US
dc.identifier.citedreferenceHansen, J., et al. ( 2005 ), Efficacy of climate forcings, J. Geophys. Res., 110, D18104, doi: 10.1029/2005JD005776.en_US
dc.identifier.citedreferenceHansen, J., et al. ( 2007 ), Climate simulations for 1880–2003 with GISS modelE, Clim. Dyn., 29, 661 – 696, doi: 10.1007/s00382‐007‐0255‐8.en_US
dc.identifier.citedreferenceHeard, I. P. C., A. J. Manning, J. M. Haywood, C. Witham, A. Redington, A. Jones, L. Clarisse, and A. Bourassa ( 2012 ), A comparison of atmospheric dispersion model predictions with observations of SO 2 and sulphate aerosol from volcanic eruptions, J. Geophys. Res., 117, D00U22, doi: 10.1029/2011JD016791.en_US
dc.identifier.citedreferenceHelbert, J., A. Maturilli, T. Roush, and H. Mannstein ( 2011 ), Deriving optical constants of volcanish ash using measurements from the planetary emissivity laboratory at DLR, in Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2011 3rd Workshop on, pp. 1 – 5, IEEE, Lisbon, Portugal.en_US
dc.identifier.citedreferenceHervo, M., et al. ( 2012 ), Physical and optical properties of 2010 Eyjafjallajökull volcanic eruption aerosol: Ground‐based, lidar and airborne measurements in France, Atmos. Chem. Phys., 12 ( 4 ), 1721 – 1736, doi: 10.5194/acp‐12‐1721‐2012.en_US
dc.identifier.citedreferenceHess, M., P. Koepke, and I. Schult ( 1998 ), Optical properties of aerosols and clouds: The software package OPAC, Bull. Am. Meteorol. Soc., 79 ( 5 ), 831 – 844.en_US
dc.identifier.citedreferenceHolland, M., D. A. Bailey, B. P. Briegleb, B. Light, and E. Hunke ( 2012 ), Improved sea ice shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on Arctic sea ice, J. Clim., 25, 1413 – 1430, doi: 10.1175/JCLI‐D‐11‐00078.1.en_US
dc.identifier.citedreferenceIacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins ( 2008 ), Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models, J. Geophys. Res., 113, D13103, doi: 10.1029/2008JD009944.en_US
dc.identifier.citedreferenceJacobson, M. Z. ( 2010 ), Short‐term effects of controlling fossil‐fuel soot, biofuel soot and gases, and methane on climate, Arctic ice, and air pollution health, J. Geophys. Res., 115, D14209, doi: 10.1029/2009JD013795.en_US
dc.identifier.citedreferenceKylling, A., M. Kahnert, H. Lindqvist, and T. Nousiainen ( 2014 ), Volcanic ash infrared signature: Porous non‐spherical ash particle shapes compared to homogeneous spherical ash particles, Atmos. Meas. Tech., 7 ( 4 ), 919 – 929, doi: 10.5194/amt‐7‐919‐2014.en_US
dc.identifier.citedreferenceLe Hir, G., Y. Donnadieu, G. Krinner, and G. Ramstein ( 2010 ), Toward the snowball Earth deglaciation..., Clim. Dyn., 35 ( 2–3 ), 285 – 297, doi: 10.1007/s00382‐010‐0748‐8.en_US
dc.identifier.citedreferenceMishchenko, M. I., and L. D. Travis ( 1998 ), Capabilities and limitations of a current FORTRAN implementation of the T‐matrix method for randomly oriented, rotationally symmetric scatterers, J. Quant. Spectrosc. Radiat. Transfer, 60 ( 3 ), 309 – 324.en_US
dc.identifier.citedreferenceMyhre, G., et al. ( 2013 ), Anthropogenic and natural radiative forcing, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by T. F. Stocker et al., pp. 659 – 740, Cambridge Univ. Press, Cambridge, U. K., and New York.en_US
dc.identifier.citedreferenceO'Dowd, C., et al. ( 2012 ), The Eyjafjallajökull ash plume—Part I: Physical, chemical and optical characteristics, Atmos. Environ., 48, 129 – 142, doi: 10.1016/j.atmosenv.2011.07.004.en_US
dc.identifier.citedreferenceOleson, K. W., et al. ( 2010 ), Technical description of version 4.0 of the Community Land Model (CLM), Tech. Rep. NCAR/TN–478+STR, Natl. Cent. for Atmos. Res., Boulder, Colo.en_US
dc.identifier.citedreferencePatterson, E. M. ( 1981 ), Measurements of the imaginary part of the refractive index between 300 and 700 nanometers for Mount St. Helens ash, Science, 211 ( 4484 ), 836 – 838.en_US
dc.identifier.citedreferencePatterson, E. M., C. O. Pollard, and I. Galindo ( 1983 ), Optical properties of the ash from El Chichon Volcano, Geophys. Res. Lett., 10 ( 4 ), 317 – 320, doi: 10.1029/GL010i004p00317.en_US
dc.identifier.citedreferencePollack, J. B., O. B. Toon, and B. K. Khare ( 1973 ), Optical properties of some terrestrial rocks and glasses, Icarus, 19, 372 – 389.en_US
dc.identifier.citedreferenceRasch, P. J., M. C. Barth, J. T. Kiehl, S. E. Schwartz, and C. M. Benkovitz ( 2000 ), A description of the global sulfur cycle and its controlling processes in the National Center for Atmospheric Research Community Climate Model, J. Geophys. Res., 105, 1367 – 1385.en_US
dc.identifier.citedreferenceRasch, P. J., P. J. Crutzen, and D. B. Coleman ( 2008 ), Exploring the geoengineering of climate using stratospheric sulfate aerosols: The role of particle size, Geophys. Res. Lett., 35, L02809, doi: 10.1029/2007GL032179.en_US
dc.identifier.citedreferenceAbbot, D. S., and R. T. Pierrehumbert ( 2010 ), Mudball: Surface dust and snowball Earth deglaciation, J. Geophys. Res., 115, D03104, doi: 10.1029/2009JD012007.en_US
dc.identifier.citedreferenceAlterskjær, K., J. E. Kristjánsson, and C. Hoose ( 2010 ), Do anthropogenic aerosols enhance or suppress the surface cloud forcing in the Arctic?, J. Geophys. Res, 115, D22204, doi: 10.1029/2010JD014015.en_US
dc.identifier.citedreferenceAnsmann, A., et al. ( 2010 ), The 16 April 2010 major volcanic ash plume over central Europe: EARLINET lidar and AERONET photometer observations at Leipzig and Munich, Germany, Geophys. Res. Lett., 37, L13810, doi: 10.1029/2010GL043809.en_US
dc.identifier.citedreferenceBingemer, H., et al. ( 2012 ), Atmospheric ice nuclei in the Eyjafjallajökull volcanic ash plume, Atmos. Chem. Phys., 12 ( 2 ), 857 – 867, doi: 10.5194/acp‐12‐857‐2012.en_US
dc.identifier.citedreferenceBjörnsson, H., F. Pálsson, S. Gudmundsson, E. Magnússon, G. Adalgeirsdóttir, T. Jóhannesson, E. Berthier, O. Sigurdsson, and T. Thorsteinsson ( 2013 ), Contribution of Icelandic ice caps to sea level rise: Trends and variability since the Little Ice Age, Geophys. Res. Lett., 40 ( 8 ), 1546 – 1550, doi: 10.1002/grl.50278.en_US
dc.identifier.citedreferenceBond, T. C., et al. ( 2013 ), Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res. Atmos., 118, 5380 – 5552, doi: 10.1002/jgrd.50171.en_US
dc.identifier.citedreferenceBriegleb, B. P., and B. Light ( 2007 ), A Delta‐Eddington multiple scattering parameterization for solar radiation in the sea ice component of the Community Climate System Model, Tech. Rep. NCAR/TN–472+STR, Natl. Cent. for Atmos. Res., Boulder, Colo.en_US
dc.identifier.citedreferenceBukowiecki, N., et al. ( 2011 ), Ground‐based and airborne in‐situ measurements of the Eyjafjallajökull volcanic aerosol plume in Switzerland in spring 2010, Atmos. Chem. Phys., 11 ( 19 ), 10,011 – 10,030, doi: 10.5194/acp‐11‐10011‐2011.en_US
dc.identifier.citedreferenceClarke, A. D., R. J. Charlson, and J. A. Ogren ( 1983 ), Stratospheric aerosol light absorption before and after El Chichon, Geophys. Res. Lett., 10 ( 11 ), 1017 – 1020, doi: 10.1029/GL010i011p01017.en_US
dc.identifier.citedreferenceConway, H., A. Gades, and C. F. Raymond ( 1996 ), Albedo of dirty snow during conditions of melt, Water Resour. Res., 32 ( 6 ), 1713 – 1718.en_US
dc.identifier.citedreferenceDerimian, Y., O. Dubovik, D. Tanre, P. Goloub, T. Lapyonok, and A. Mortier ( 2012 ), Optical properties and radiative forcing of the Eyjafjallajökull volcanic ash layer observed over Lille, France, in 2010, J. Geophys. Res., 117, D00U25, doi: 10.1029/2011JD016815.en_US
dc.identifier.citedreferenceDoherty, S. J., C. M. Bitz, and M. G. Flanner ( 2014 ), Biases in modeled surface snow BC mixing ratios in prescribed aerosol climate model runs, Atmos. Chem. Phys. Discuss., 14 ( 9 ), 13,167 – 13,196, doi: 10.5194/acpd‐14‐13167‐2014.en_US
dc.identifier.citedreferenceFlanner, M. G., C. S. Zender, J. T. Randerson, and P. J. Rasch ( 2007 ), Present‐day climate forcing and response from black carbon in snow, J. Geophys. Res., 112, D11202, doi: 10.1029/2006JD008003.en_US
dc.identifier.citedreferenceFlemming, J., and A. Inness ( 2013 ), Volcanic sulfur dioxide plume forecasts based on UV satellite retrievals for the 2011 Grimsvötn and the 2010 Eyjafjallajökull eruption, J. Geophys. Res. Atmos., 118, 10,172 – 10,189, doi: 10.1002/jgrd.50753.en_US
dc.identifier.citedreferenceGasteiger, J., S. Groß, V. Freudenthaler, and M. Wiegner ( 2011 ), Volcanic ash from Iceland over Munich: Mass concentration retrieved from ground‐based remote sensing measurements, Atmos. Chem. Phys., 11 ( 5 ), 2209 – 2223, doi: 10.5194/acp‐11‐2209‐2011.en_US
dc.identifier.citedreferenceRobock, A. ( 2000 ), Volcanic eruptions and climate, Rev. Geophys., 38 ( 2 ), 198 – 219, doi: 10.1029/1998RG000054.en_US
dc.identifier.citedreferenceRobock, A. ( 2013 ), The latest on volcanic eruptions and climate, Eos Trans. AGU, 94 ( 35 ), 305 – 306, doi: 10.1002/2013EO350001.en_US
dc.identifier.citedreferenceRocha‐Lima, A., J. V. Martins, L. A. Remer, N. A. Krotkov, M. H. Tabacniks, Y. Ben‐Ami, and P. Artaxo ( 2014 ), Optical, microphysical and compositional properties of the Eyjafjallajökull volcanic ash, Atmos. Chem. Phys. Discuss., 14 ( 9 ), 13,271 – 13,300, doi: 10.5194/acpd‐14‐13271‐2014.en_US
dc.identifier.citedreferenceSchumann, U., et al. ( 2011 ), Airborne observations of the Eyjafjalla volcano ash cloud over Europe during air space closure in April and May 2010, Atmos. Chem. Phys., 11 ( 5 ), 2245 – 2279, doi: 10.5194/acp‐11‐2245‐2011.en_US
dc.identifier.citedreferenceStenchikov, G. L., I. Kirchner, A. Robock, H. F. Graf, J. C. Antuña, R. G. Grainger, A. Lambert, and L. Thomason ( 1998 ), Radiative forcing from the 1991 Mount Pinatubo volcanic eruption, J. Geophys. Res., 103 ( D12 ), 13,837 – 13,857.en_US
dc.identifier.citedreferenceStevens, B., and O. Boucher ( 2012 ), Climate science: The aerosol effect, Nature, 490 ( 7418 ), 40 – 41, doi: 10.1038/490040a.en_US
dc.identifier.citedreferenceStohl, A. et al. ( 2011 ), Determination of time‐ and height‐resolved volcanic ash emissions and their use for quantitative ash dispersion modeling: The 2010 Eyjafjallajökull eruption, Atmos. Chem. Phys., 11 ( 9 ), 4333 – 4351, doi: 10.5194/acp‐11‐4333‐2011.en_US
dc.identifier.citedreferenceToledano, C., et al. ( 2012 ), Aerosol properties of the Eyjafjallajökull ash derived from sun photometer and satellite observations over the Iberian Peninsula, Atmos. Environ., 48, 22 – 32, doi: 10.1016/j.atmosenv.2011.09.072.en_US
dc.identifier.citedreferenceVolz, F. E. ( 1973 ), Infrared optical constants of ammonium sulfate, Saharan dust, volcanic pumice, and flyash, Appl. Opt., 12 ( 3 ), 564 – 568.en_US
dc.identifier.citedreferenceWeinzierl, B., et al. ( 2012 ), On the visibility of airborne volcanic ash and mineral dust from the pilot's perspective in flight, Phys. Chem. Earth, 45–46, 87 – 102, doi: 10.1016/j.pce.2012.04.003.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.