Show simple item record

MESSENGER observations of large dayside flux transfer events: Do they drive Mercury's substorm cycle?

dc.contributor.authorImber, Suzanne M.en_US
dc.contributor.authorSlavin, James A.en_US
dc.contributor.authorBoardsen, Scott A.en_US
dc.contributor.authorAnderson, Brian J.en_US
dc.contributor.authorKorth, Hajeen_US
dc.contributor.authorMcNutt, Ralph L.en_US
dc.contributor.authorSolomon, Sean C.en_US
dc.date.accessioned2014-09-03T16:51:59Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2014-09-03T16:51:59Z
dc.date.issued2014-07en_US
dc.identifier.citationImber, Suzanne M.; Slavin, James A.; Boardsen, Scott A.; Anderson, Brian J.; Korth, Haje; McNutt, Ralph L.; Solomon, Sean C. (2014). "MESSENGER observations of large dayside flux transfer events: Do they drive Mercury's substorm cycle?." Journal of Geophysical Research: Space Physics 119(7): 5613-5623.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108332
dc.description.abstractThe large‐scale dynamic behavior of Mercury's highly compressed magnetosphere is predominantly powered by magnetic reconnection, which transfers energy and momentum from the solar wind to the magnetosphere. The contribution of flux transfer events (FTEs) at the dayside magnetopause to the redistribution of magnetic flux in Mercury's magnetosphere is assessed with magnetic field data acquired in orbit about Mercury by the Magnetometer on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. FTEs with core fields greater than the planetary field just inside the magnetopause are prevalent at Mercury. Fifty‐eight such large‐amplitude FTEs were identified during February and May 2012, when MESSENGER sampled the subsolar magnetosheath. The orientation of each FTE was determined by minimum variance analysis, and the magnetic flux content of each was estimated using a force‐free flux rope model. The average flux content of the FTEs was 0.06 MWb, and their durations imply a transient increase in the cross‐polar cap potential of ~25 kV. For a substorm timescale of 2–3 min, as indicated by magnetotail flux loading and unloading, the FTE repetition rate (10 s) and average flux content (assumed to be 0.03 MWb) imply that FTEs contribute at least ~30% of the flux transport required to drive the Mercury substorm cycle. At Earth, in contrast, FTEs are estimated to contribute less than 2% of the substorm flux transport. This result implies that whereas at Earth, at which steady‐state dayside reconnection is prevalent, multiple X‐line dayside reconnection and associated FTEs at Mercury are a dominant forcing for magnetospheric dynamics. Key Points Statistical study of dayside FTEs at Mercury FTEs at Mercury have core fields of approximately a few hundred nT and durations ~2–3 s FTEs transport ~30% of the flux needed to drive Mercury's substorm cycleen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherMercuryen_US
dc.subject.otherFTEen_US
dc.subject.otherMESSENGERen_US
dc.titleMESSENGER observations of large dayside flux transfer events: Do they drive Mercury's substorm cycle?en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108332/1/jgra51088.pdf
dc.identifier.doi10.1002/2014JA019884en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceScholer, M. ( 1988 ), Magnetic flux transfer at the magnetopause based on single X‐line bursty reconnection, Geophys. Res. Lett., 15, 291 – 294, doi: 10.1029/GL015i004p00291.en_US
dc.identifier.citedreferenceRussell, C. T., and R. C. Elphic ( 1978 ), Initial ISEE magnetometer results: Magnetopause observations, Space Sci. Rev., 22, 681 – 715.en_US
dc.identifier.citedreferenceRussell, C. T., and R. C. Elphic ( 1979 ), ISEE observations of flux transfer events at the dayside magnetopause, Geophys. Res. Lett., 6, 33 – 36, doi: 10.1029/GL006i001p00033.en_US
dc.identifier.citedreferenceRussell, C. T., and R. J. Walker ( 1985 ), Flux transfer events at Mercury, J. Geophys. Res., 90, 11,067 – 11,074, doi: 10.1029/JA090iA11p11067.en_US
dc.identifier.citedreferenceSanny, J., C. Beck, and D. G. Sibeck ( 1998 ), A statistical study of the magnetic signatures of FTEs near the dayside magnetopause, J. Geophys. Res., 103, 4683 – 4692, doi: 10.1029/97JA03246.en_US
dc.identifier.citedreferenceSaunders, M. A., C. T. Russell, and N. Sckopke ( 1984 ), Flux transfer events: Scale size and interior structure, Geophys. Res. Lett., 11, 131 – 134, doi: 10.1029/GL011i002p00131.en_US
dc.identifier.citedreferenceShue, J.‐H., J. K. Chao, H. C. Fu, C. T. Russell, P. Song, K. K. Khurana, and H. J. Singer ( 1997 ), A new functional form to study the solar wind control of the magnetopause size and shape, J. Geophys. Res., 102, 9497 – 9511, doi: 10.1029/97JA00196.en_US
dc.identifier.citedreferenceSlavin, J. A., and R. E. Holzer ( 1979 ), The effect of erosion on the solar wind stand‐off distance at Mercury, J. Geophys. Res., 84, 2076 – 2082, doi: 10.1029/JA084iA05p02076.en_US
dc.identifier.citedreferenceSlavin, J. A., R. P. Lepping, J. Gjerloev, D. H. Fairfield, M. Hesse, C. J. Owen, M. B. Moldwin, T. Nagai, A. Ieda, and T. Mukai ( 2003 ), Geotail observations of magnetic flux ropes in the plasma sheet, J. Geophys. Res., 108 ( A1 ), 1015, doi: 10.1029/2002JA009557.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2009 ), MESSENGER observations of magnetic reconnection in Mercury's magnetosphere, Science, 324, 606 – 610, doi: 10.1126/science.1172011.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2010a ), MESSENGER observations of extreme loading and unloading of Mercury's magnetic tail, Science, 329, 665 – 668.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2010b ), MESSENGER observations of large flux transfer events at Mercury, Geophys. Res. Lett., 37, L02105, doi: 10.1029/2009GL041485.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2012 ), MESSENGER observations of a flux‐transfer‐event shower at Mercury, J. Geophys. Res., 117, A00M06, doi: 10.1029/2012JA017926.en_US
dc.identifier.citedreferenceSonnerup, B. U. ( 1974 ), Magnetopause reconnection rate, J. Geophys. Res., 79, 1546 – 1549, doi: 10.1029/JA079i010p01546.en_US
dc.identifier.citedreferenceSonnerup, B. U., and L. J. Cahill Jr. ( 1967 ), Magnetopause structure and attitude from Explorer 12 observations, J. Geophys. Res., 72, 171 – 183, doi: 10.1029/JZ072i001p00171.en_US
dc.identifier.citedreferenceSonnerup, B. U., I. Papamastorakis, G. Paschmann, and H. Lühr ( 1990 ), The magnetopause for large magnetic shear: Analysis of convection electric fields from AMPTE/IRM, J. Geophys. Res., 95, 10,541 – 10,557, doi: 10.1029/JA095iA07p10541.en_US
dc.identifier.citedreferenceSonnerup, B. U. Ö., H. Hasegawa, and G. Paschmann ( 2004 ), Anatomy of a flux transfer event seen by Cluster, Geophys. Res. Lett., 31, L11803, doi: 10.1029/2004GL020134.en_US
dc.identifier.citedreferenceSouthwood, D. J., C. J. Farrugia, and M. A. Saunders ( 1988 ), What are flux transfer events?, Planet. Space Sci., 36, 503 – 508.en_US
dc.identifier.citedreferenceSundberg, T., et al. ( 2012 ), MESSENGER observations of dipolarization events in Mercury's magnetotail, J. Geophys. Res., 117, A00M03, doi: 10.1029/2012JA017756.en_US
dc.identifier.citedreferenceTrattner, K. J., J. S. Mulcock, S. M. Petrinec, and S. A. Fuselier ( 2007 ), Location of the reconnection line at the magnetopause during southward IMF conditions, Geophys. Res. Lett., 34, L03108, doi: 10.1029/2006GL028397.en_US
dc.identifier.citedreferenceWang, Y., et al. ( 2005 ), Initial results of high‐latitude magnetopause and low‐latitude flank flux transfer events from 3 years of Cluster observations, J. Geophys. Res., 110, A11221, doi: 10.1029/2005JA011150.en_US
dc.identifier.citedreferenceWild, J. A., et al. ( 2005 ), Simultaneous in‐situ observations of the signatures of dayside reconnection at the high‐ and low‐latitude magnetopause, Ann. Geophys., 23, 445 – 460, doi: 10.5194/angeo‐23‐445‐2005.en_US
dc.identifier.citedreferenceWinslow, R. M., B. J. Anderson, C. L. Johnson, J. A. Slavin, H. Korth, M. E. Purucker, D. N. Baker, and S. C. Solomon ( 2013 ), Mercury's magnetopause and bow shock from MESSENGER Magnetometer observations, J. Geophys. Res. Space Physics, 118, 2213 – 2227, doi: 10.1002/jgra.50237.en_US
dc.identifier.citedreferenceZhang, H., K. K. Khurana, M. G. Kivelson, V. Angelopoulos, Z. Y. Pu, Q.‐G. Zong, J. Liu, and X.‐Z. Zhou ( 2008 ), Modeling a force‐free flux transfer event probed by multiple Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft, J. Geophys. Res., 113, A00C05, doi: 10.1029/2008JA013451.en_US
dc.identifier.citedreferenceGershman, D. J., J. A. Slavin, J. M. Raines, T. H. Zurbuchen, B. J. Anderson, H. Korth, D. N. Baker, and S. C. Solomon ( 2013 ), Magnetic flux pileup and plasma depletion in Mercury's subsolar magnetosheath, J. Geophys. Res. Space Physics, 118, 7181 – 7199, doi: 10.1002/2013JA019244.en_US
dc.identifier.citedreferenceGonzalez, W. D., and F. S. Mozer ( 1974 ), A quantitative model for the potential resulting from reconnection with an arbitrary interplanetary magnetic field, J. Geophys. Res., 79, 4186 – 4194, doi: 10.1029/JA079i028p04186.en_US
dc.identifier.citedreferenceHasegawa, H., B. U. Ö. Sonnerup, C. J. Owen, B. Klecker, G. Paschmann, A. Balogh, and H. Rème ( 2006 ), The structure of flux transfer events recovered from Cluster data, Ann. Geophys., 24, 603 – 618, doi: 10.5194/angeo‐24‐603‐2006.en_US
dc.identifier.citedreferenceHasegawa, H., et al. ( 2010 ), Evidence for a flux transfer event generated by multiple X‐line reconnection at the magnetopause, Geophys. Res. Lett., 37, L16101, doi: 10.1029/2010GL044219.en_US
dc.identifier.citedreferenceAnderson, B. J., M. H. Acuña, D. A. Lohr, J. Scheifele, A. Raval, H. Korth, and J. A. Slavin ( 2007 ), The Magnetometer instrument on MESSENGER, Space Sci. Rev., 131, 417 – 450, doi: 10.1007/s11214‐007‐9246‐7.en_US
dc.identifier.citedreferenceAnderson, B. J., C. L. Johnson, H. Korth, M. E. Purucker, R. M. Winslow, J. A. Slavin, S. C. Solomon, R. L. McNutt Jr., J. M. Raines, and T. H. Zurbuchen ( 2011 ), The global magnetic field of Mercury from MESSENGER orbital observations, Science, 333, 1859 – 1862, doi: 10.1126/science.1211001.en_US
dc.identifier.citedreferenceAnderson, B. J., C. L. Johnson, H. Korth, R. M. Winslow, J. E. Borovsky, M. E. Purucker, J. A. Slavin, S. C. Solomon, M. T. Zuber, and R. L. McNutt Jr. ( 2012 ), Low‐degree structure in Mercury's planetary magnetic field, J. Geophys. Res., 117, E00L12, doi: 10.1029/2012JE004159.en_US
dc.identifier.citedreferenceAndrews, G. B., et al. ( 2007 ), The Energetic Particle and Plasma Spectrometer instrument on the MESSENGER spacecraft, Space Sci. Rev., 131, 523 – 556, doi: 10.1007/s11214‐007‐9272‐5.en_US
dc.identifier.citedreferenceBaumjohann, W., et al. ( 2006 ), The magnetosphere of Mercury and its solar wind environment: Open issues and scientific questions, Adv. Space Res., 38, 604 – 609.en_US
dc.identifier.citedreferenceBerchem, J., and C. T. Russell ( 1984 ), Flux transfer events on the magnetopause: Spatial distribution and controlling factors, J. Geophys. Res., 89, 6689 – 6703, doi: 10.1029/JA089iA08p06689.en_US
dc.identifier.citedreferenceCowley, S. W. H., and M. Lockwood ( 1992 ), Excitation and decay of solar wind‐driven flows in the magnetosphere‐ionosphere system, Ann. Geophys., 10, 103 – 115.en_US
dc.identifier.citedreferenceCowley, S. W. H., and C. J. Owen ( 1989 ), A simple illustrative model of open flux tube motion over the dayside magnetopause, Planet. Space Sci., 37, 1461 – 1475.en_US
dc.identifier.citedreferenceDiBraccio, G. A., J. A. Slavin, S. A. Boardsen, B. J. Anderson, H. Korth, T. H. Zurbuchen, J. M. Raines, D. N. Baker, R. L. McNutt Jr., and S. C. Solomon ( 2013 ), MESSENGER observations of magnetopause structure and dynamics at Mercury, J. Geophys. Res. Space Physics, 118, 997 – 1008, doi: 10.1002/jgra.50123.en_US
dc.identifier.citedreferenceDungey, J. W. ( 1961 ), Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett., 6, 47 – 48, doi: 10.1103/PhysRevLett.6.47.en_US
dc.identifier.citedreferenceDunlop, M. W., et al. ( 2005 ), Coordinated Cluster/Double Star observations of dayside reconnection signatures, Ann. Geophys., 23, 2867 – 2875, doi: 10.5194/angeo‐23‐2867‐2005.en_US
dc.identifier.citedreferenceEastwood, J. P., T. D. Phan, R. C. Fear, D. G. Sibeck, V. Angelopoulos, M. Øieroset, and M. A. Shay ( 2012 ), Survival of flux transfer event (FTE) flux ropes far along the tail magnetopause, J. Geophys. Res., 117, A08222, doi: 10.1029/2012JA017722.en_US
dc.identifier.citedreferenceFear, R. C., S. E. Milan, A. N. Fazakerley, C. J. Owen, T. Asikainen, M. G. G. T. Taylor, E. A. Lucek, H. Rème, I. Dandouras, and P. W. Daly ( 2007 ), Motion of flux transfer events: A test of the Cooling model, Ann. Geophys., 25, 1669 – 1690, doi: 10.5194/angeo‐25‐1669‐2007.en_US
dc.identifier.citedreferenceFear, R. C., S. E. Milan, A. N. Fazakerley, E. A. Lucek, S. W. H. Cowley, and I. Dandouras ( 2008 ), The azimuthal extent of three flux transfer events, Ann. Geophys., 26, 2353 – 2369.en_US
dc.identifier.citedreferenceHuang, C.‐S., A. D. DeJong, and X. Cai ( 2009 ), Magnetic flux in the magnetotail and polar cap during sawteeth, isolated substorms, and steady magnetospheric convection events, J. Geophys. Res., 114, A07202, doi: 10.1029/2009JA014232.en_US
dc.identifier.citedreferenceJohnson, C. L., et al. ( 2012 ), MESSENGER observations of Mercury's magnetic field structure, J. Geophys. Res., 117, E00L14, doi: 10.1029/2012JE004217.en_US
dc.identifier.citedreferenceKawano, H., and C. T. Russell ( 1997 ), Cause of postterminator flux transfer events, J. Geophys. Res., 102, 27,029 – 27,038, doi: 10.1029/97JA02139.en_US
dc.identifier.citedreferenceKorotova, G. I., D. G. Sibeck, and V. I. Petrov ( 2012 ), Interball‐1 observations of flux transfer events, Ann. Geophys., 30, 1451 – 1462, doi: 10.5194/angeo‐30‐1451‐2012.en_US
dc.identifier.citedreferenceKuo, H., C. T. Russell, and G. Le ( 1995 ), Statistical studies of flux transfer events, J. Geophys. Res., 100, 3513 – 3519, doi: 10.1029/94JA02498.en_US
dc.identifier.citedreferenceLee, L. C., and Z. F. Fu ( 1985 ), A theory of magnetic flux transfer at the Earth's magnetopause, Geophys. Res. Lett., 12, 105 – 108, doi: 10.1029/GL012i002p00105.en_US
dc.identifier.citedreferenceLepping, R. P., J. A. Jones, and L. F. Burlaga ( 1990 ), Magnetic field structure of interplanetary magnetic clouds at 1 AU, J. Geophys. Res., 95, 11,957 – 11,965, doi: 10.1029/JA095iA08p11957.en_US
dc.identifier.citedreferenceLepping, R. P., D. H. Fairfield, J. Jones, L. A. Frank, W. R. Paterson, S. Kokubun, and T. Yamamoto ( 1995 ), Cross‐tail magnetic flux ropes as observed by the Geotail spacecraft, Geophys. Res. Lett., 22, 1193 – 1196, doi: 10.1029/94GL01114.en_US
dc.identifier.citedreferenceLepping, R. P., J. A. Slavin, M. Hesse, J. A. Jones, and A. Szabo ( 1996 ), Analysis of magnetotail flux ropes with strong core fields: ISEE 3 observations, J. Geomagn. Geoelec., 48, 589 – 601.en_US
dc.identifier.citedreferenceLui, A. T. Y., D. G. Sibeck, T. Phan, J. P. McFadden, V. Angelopoulos, and K.‐H. Glassmeier ( 2008 ), Reconstruction of a flux transfer event based on observations from five THEMIS satellites, J. Geophys. Res., 113, A00C01, doi: 10.1029/2008JA013189.en_US
dc.identifier.citedreferenceLundquist, S. ( 1950 ), Magneto‐hydrostatic fields, Ark. Fys., 2, 361 – 365.en_US
dc.identifier.citedreferenceMilan, S. E., G. Provan, and B. Hubert ( 2007 ), Magnetic flux transport in the Dungey cycle: A survey of dayside and nightside reconnection rates, J. Geophys. Res., 112, A01209, doi: 10.1029/2006JA011642.en_US
dc.identifier.citedreferenceMoore, T. E., M.‐C. Fok, and M. O. Chandler ( 2002 ), The dayside reconnection X line, J. Geophys. Res., 107 ( A10 ), 1332, doi: 10.1029/2002JA009381.en_US
dc.identifier.citedreferencePartamies, N., L. Juusola, E. Tanskanen, and K. Kauristie ( 2013 ), Statistical properties of substorms during different storm and solar cycle phases, Ann. Geophys., 31, 349 – 358, doi: 10.5194/angeo‐31‐349‐2013.en_US
dc.identifier.citedreferencePhan, T., et al. ( 2000 ), Extended magnetic reconnection at the Earth's magnetopause from detection of bi‐directional jets, Nature, 404, 848 – 850.en_US
dc.identifier.citedreferenceRaeder, J. ( 2006 ), Flux transfer events: 1. Generation mechanism for strong southward IMF, Ann. Geophys., 24, 381 – 392, doi: 10.5194/angeo‐24‐381‐2006.en_US
dc.identifier.citedreferenceRijnbeek, R. P., S. W. H. Cowley, D. J. Southwood, and C. T. Russell ( 1984 ), A survey of dayside flux transfer events observed by ISEE‐1 and ISEE‐2 magnetometers, J. Geophys. Res., 89, 786 – 800, doi: 10.1029/JA089iA02p00786.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.