Show simple item record

Indolicidin Targets Duplex DNA: Structural and Mechanistic Insight through a Combination of Spectroscopy and Microscopy

dc.contributor.authorGhosh, Anirbanen_US
dc.contributor.authorKar, Rajiv Kumaren_US
dc.contributor.authorJana, Jagannathen_US
dc.contributor.authorSaha, Abhijiten_US
dc.contributor.authorJana, Batakrishnaen_US
dc.contributor.authorKrishnamoorthy, Janarthananen_US
dc.contributor.authorKumar, Dineshen_US
dc.contributor.authorGhosh, Surajiten_US
dc.contributor.authorChatterjee, Subhrangsuen_US
dc.contributor.authorBhunia, Anirbanen_US
dc.date.accessioned2014-09-03T16:52:05Z
dc.date.availableWITHHELD_13_MONTHSen_US
dc.date.available2014-09-03T16:52:05Z
dc.date.issued2014-09en_US
dc.identifier.citationGhosh, Anirban; Kar, Rajiv Kumar; Jana, Jagannath; Saha, Abhijit; Jana, Batakrishna; Krishnamoorthy, Janarthanan; Kumar, Dinesh; Ghosh, Surajit; Chatterjee, Subhrangsu; Bhunia, Anirban (2014). "Indolicidin Targets Duplex DNA: Structural and Mechanistic Insight through a Combination of Spectroscopy and Microscopy." ChemMedChem 9(9): 2052-2058.en_US
dc.identifier.issn1860-7179en_US
dc.identifier.issn1860-7187en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108345
dc.description.abstractIndolicidin (IR13), a 13‐residue antimicrobial peptide from the cathelicidin family, is known to exhibit a broad spectrum of antimicrobial activity against various microorganisms. This peptide inhibits bacterial DNA synthesis resulting in cell filamentation. However, the precise mechanism remains unclear and requires further investigation. The central PWWP motif of IR13 provides a unique structural element that can wrap around, and thus stabilize, duplex B‐type DNA structures. Replacements of the central Trp‐Trp pair with Ala‐Ala, His‐His, or Phe‐Phe residues in the PxxP motif significantly affects the ability of the peptide to stabilize duplex DNA. Results of microscopy studies in conjunction with spectroscopic data confirm that the DNA duplex is stabilized by IR13, thereby inhibiting DNA replication and transcription. In this study we provide high‐resolution structural information on the interaction between indolicidin and DNA, which will be beneficial for the design of novel therapeutic antibiotics based on peptide scaffolds. That′s a wrap! The PWWP short peptide derived from indolicidin provides a unique structural element that stabilizes the DNA duplex. Substitution of Trp residues in PWWP with Ala, His, or Phe significantly destabilizes the DNA duplex structure, thereby establishing a strong correlation between the surface area of the residues (decreasing order: Ala<His≤Phe<Trp) present between the PxxP domain and DNA stabilization.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherIndolicidinen_US
dc.subject.otherNMR Spectroscopyen_US
dc.subject.otherDuplex DNAen_US
dc.subject.otherAMPen_US
dc.subject.otherMolecular Dynamicsen_US
dc.titleIndolicidin Targets Duplex DNA: Structural and Mechanistic Insight through a Combination of Spectroscopy and Microscopyen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNatural Resources and Environmenen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI 48109‐1055 (USA)en_US
dc.contributor.affiliationotherChemistry Division, CSIR–Indian Institute of Chemical Biology (IICB), 4, Raja S. C. Mullick Road, Kolkata‐700032 (India)en_US
dc.contributor.affiliationotherCentre of Biomedical and Magnetic Resonance (CBMR), SGPGIMS Campus, Raibareli Road, Lucknow (India)en_US
dc.contributor.affiliationotherDepartment of Biophysics, Bose Institute, P‐1/12 CIT Scheme VII (M), Kolkata 700054 (India)en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108345/1/cmdc_201402215_sm_miscellaneous_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108345/2/2052_ftp.pdf
dc.identifier.doi10.1002/cmdc.201402215en_US
dc.identifier.sourceChemMedChemen_US
dc.identifier.citedreferenceA. Rozek, C. L. Friedrich, R. E. Hancock, Biochemistry 2000, 39, 15765 – 15774.en_US
dc.identifier.citedreferenceA. Bhunia, H. Mohanram, P. N. Domadia, J. Torres, S. Bhattacharjya, J. Biol. Chem. 2009, 284, 21991 – 22004.en_US
dc.identifier.citedreferenceK. M. O′Connell, J. T. Hodgkinson, H. F. Sore, M. Welch, G. P. Salmond, D. R. Spring, Angew. Chem. Int. Ed. 2013, 52, 10706 – 10733; Angew. Chem. 2013, 125, 10904 – 10932.en_US
dc.identifier.citedreferenceM. Zasloff, Nature 2002, 415, 389 – 395.en_US
dc.identifier.citedreferenceG. Taubes, Science 2008, 321, 356.en_US
dc.identifier.citedreferenceR. I. Lehrer, Nat. Rev. Microbiol. 2004, 2, 727 – 738.en_US
dc.identifier.citedreferenceM. Torrent, J. Valle, M. Nogués, E. Boix, D. Andreu, Angew. Chem. Int. Ed. 2011, 50, 10686 – 10689; Angew. Chem. 2011, 123, 10874 – 10877.en_US
dc.identifier.citedreferenceE. Giralt, Small Wonders: Peptides for Disease Control (Eds.: K. Rajasekaran, J. W. Cary, J. M. Jaynes, E. Montesinos ), Wiley Online Library, 2013.en_US
dc.identifier.citedreferenceA. Bhunia, R. Saravanan, H. Mohanram, M. L. Mangoni, S. Bhattacharjya, J. Biol. Chem. 2011, 286, 24394 – 24406.en_US
dc.identifier.citedreferenceA. Bhunia, A. Ramamoorthy, S. Bhattacharjya, Chem. Eur. J. 2009, 15, 2036 – 2040.en_US
dc.identifier.citedreferenceD. Zweytick, G. Deutsch, J. Andrä, S. E. Blondelle, E. Vollmer, R. Jerala, K. Lohner, J. Biol. Chem. 2011, 286, 21266 – 21276.en_US
dc.identifier.citedreferenceA. W. Young, Z. Liu, C. Zhou, F. Totsingan, N. Jiwrajka, Z. Shi, N. R. Kallenbach, MedChemComm 2011, 2, 308 – 314.en_US
dc.identifier.citedreferenceM. L. Mangoni, R. F. Epand, Y. Rosenfeld, A. Peleg, D. Barra, R. M. Epand, Y. Shai, J. Biol. Chem. 2008, 283, 22907 – 22917.en_US
dc.identifier.citedreferenceM. Zanetti, J. Leukocyte Biol. 2003, 75, 39 – 48.en_US
dc.identifier.citedreferenceM. Son, Y. Lee, H. Hwang, S. Hyun, J. Yu, ChemMedChem 2013, 8, 1638 – 1642.en_US
dc.identifier.citedreferenceR. K. Sharma, S. Sundriyal, N. Wangoo, W. Tegge, R. Jain, ChemMedChem 2010, 5, 86 – 95.en_US
dc.identifier.citedreferenceM. E. Selsted, M. J. Novotny, W. L. Morris, Y.‐Q. Tang, W. Smith, J. S. Cullor, J. Biol. Chem. 1992, 267, 4292 – 4295.en_US
dc.identifier.citedreferenceJ. E. Shaw, J.‐R. Alattia, J. E. Verity, G. G. Privé, C. M. Yip, J. Struct. Biol. 2006, 154, 42 – 58.en_US
dc.identifier.citedreferenceC. Subbalakshmi, N. Sitaram, FEMS Microbiol. Lett. 1998, 160, 91 – 96.en_US
dc.identifier.citedreferenceC. Qiu, K. Sawada, X. Zhang, X. Cheng, Nat. Struct. Mol. Biol. 2002, 9, 217 – 224.en_US
dc.identifier.citedreferenceA. Vezzoli, N. Bonadies, M. D. Allen, S. M. Freund, C. M. Santiveri, B. T. Kvinlaug, B. J. Huntly, B. Göttgens, M. Bycroft, Nat. Struct. Mol. Biol. 2010, 17, 617 – 619.en_US
dc.identifier.citedreferenceC. Subbalakshmi, V. Krishnakumari, R. Nagaraj, N. Sitaram, FEBS Lett. 1996, 395, 48 – 52.en_US
dc.identifier.citedreferenceC.‐H. Hsu, C. Chen, M.‐L. Jou, A. Y.‐L. Lee, Y.‐C. Lin, Y.‐P. Yu, W.‐T. Huang, S.‐H. Wu, Nucleic Acids Res. 2005, 33, 4053 – 4064.en_US
dc.identifier.citedreferenceA. Biswas, A. Saha, B. Jana, P. Kurkute, G. Mondal, S. Ghosh, ChemBioChem 2013, 14, 689 – 694.en_US
dc.identifier.citedreferenceM. Bhagawati, S. Ghosh, A. Reichel, K. Froehner, T. Surrey, J. Piehler, Angew. Chem. Int. Ed. 2009, 48, 9188 – 9191; Angew. Chem. 2009, 121, 9352 – 9355.en_US
dc.identifier.citedreferenceD. Davis, M. Perlman, R. London, J. Magn. Reson. Ser. B 1994, 104, 266 – 275.en_US
dc.identifier.citedreferenceC. Deverell, R. Morgan, J. Strange, Mol. Phys. 1970, 18, 553 – 559.en_US
dc.identifier.citedreferenceA. Palmer   III, C. D. Kroenke, J. P. Loria, Methods Enzymol. 2001, 339, 204 – 238.en_US
dc.identifier.citedreferenceD. W. Ritchie, Proteins Struct. Funct. Bioinf. 2003, 52, 98 – 106.en_US
dc.identifier.citedreferenceE. Tuite, U. Sehlstedt, P. Hagmar, B. Nordén, M. Takahashi, Eur. J. Biochem. 1997, 243, 482 – 492.en_US
dc.identifier.citedreferenceN. Spacková, T. Cheatham   III, F. Ryjácek, F. Lankas, L. Van Meervelt, P. Hobza, J. Sponer, J. Am. Chem. Soc. 2003, 125, 1759 – 1769.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.