Show simple item record

Neutrophil Extracellular Trap–Derived Enzymes Oxidize High‐Density Lipoprotein: An Additional Proatherogenic Mechanism in Systemic Lupus Erythematosus

dc.contributor.authorSmith, Carolyne K.en_US
dc.contributor.authorVivekanandan‐giri, Anuradhaen_US
dc.contributor.authorTang, Chongrenen_US
dc.contributor.authorKnight, Jason S.en_US
dc.contributor.authorMathew, Annaen_US
dc.contributor.authorPadilla, Robin L.en_US
dc.contributor.authorGillespie, Brenda W.en_US
dc.contributor.authorCarmona‐rivera, Carmeloen_US
dc.contributor.authorLiu, Xiaodanen_US
dc.contributor.authorSubramanian, Venkataramanen_US
dc.contributor.authorHasni, Sarfarazen_US
dc.contributor.authorThompson, Paul R.en_US
dc.contributor.authorHeinecke, Jay W.en_US
dc.contributor.authorSaran, Rajiven_US
dc.contributor.authorPennathur, Subramaniamen_US
dc.contributor.authorKaplan, Mariana J.en_US
dc.date.accessioned2014-09-03T16:52:08Z
dc.date.availableWITHHELD_13_MONTHSen_US
dc.date.available2014-09-03T16:52:08Z
dc.date.issued2014-09en_US
dc.identifier.citationSmith, Carolyne K.; Vivekanandan‐giri, Anuradha ; Tang, Chongren; Knight, Jason S.; Mathew, Anna; Padilla, Robin L.; Gillespie, Brenda W.; Carmona‐rivera, Carmelo ; Liu, Xiaodan; Subramanian, Venkataraman; Hasni, Sarfaraz; Thompson, Paul R.; Heinecke, Jay W.; Saran, Rajiv; Pennathur, Subramaniam; Kaplan, Mariana J. (2014). "Neutrophil Extracellular Trapâ Derived Enzymes Oxidize Highâ Density Lipoprotein: An Additional Proatherogenic Mechanism in Systemic Lupus Erythematosus." Arthritis & Rheumatology 66(9): 2532-2544.en_US
dc.identifier.issn2326-5191en_US
dc.identifier.issn2326-5205en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108351
dc.publisherWiley Periodicals, Inc.en_US
dc.titleNeutrophil Extracellular Trap–Derived Enzymes Oxidize High‐Density Lipoprotein: An Additional Proatherogenic Mechanism in Systemic Lupus Erythematosusen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelRheumatologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108351/1/art38703.pdf
dc.identifier.doi10.1002/art.38703en_US
dc.identifier.sourceArthritis & Rheumatologyen_US
dc.identifier.citedreferenceKuznik A, Bencina M, Svajger U, Jeras M, Rozman B, Jerala R. Mechanism of endosomal TLR inhibition by antimalarial drugs and imidazoquinolines. J Immunol 2011; 186: 4794 – 804.en_US
dc.identifier.citedreferenceTsutsui M, Shimokawa H, Otsuji Y, Yanagihara N. Pathophysiological relevance of NO signaling in the cardiovascular system: novel insight from mice lacking all NO synthases. Pharmacol Ther 2010; 128: 499 – 508.en_US
dc.identifier.citedreferenceBolli R. Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade of research. J Mol Cell Cardiol 2001; 33: 1897 – 918.en_US
dc.identifier.citedreferenceMcMillen TS, Heinecke JW, LeBoeuf RC. Expression of human myeloperoxidase by macrophages promotes atherosclerosis in mice. Circulation 2005; 111: 2798 – 804.en_US
dc.identifier.citedreferenceCedergren J, Follin P, Forslund T, Lindmark M, Sundqvist T, Skogh T. Inducible nitric oxide synthase (NOS II) is constitutive in human neutrophils. APMIS 2003; 111: 963 – 8.en_US
dc.identifier.citedreferenceMunafo DB, Johnson JL, Brzezinska AA, Ellis BA, Wood MR, Catz SD. DNase I inhibits a late phase of reactive oxygen species production in neutrophils. J Innate Immun 2009; 1: 527 – 42.en_US
dc.identifier.citedreferenceFuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 2007; 176: 231 – 41.en_US
dc.identifier.citedreferenceKhandpur R, Carmona‐Rivera C, Vivekanandan‐Giri A, Gizinski A, Yalavarthi S, Knight JS, et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med 2013; 5: 178ra40.en_US
dc.identifier.citedreferenceLeffler J, Martin M, Gullstrand B, Tyden H, Lood C, Truedsson L, et al. Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease. J Immunol 2012; 188: 3522 – 31.en_US
dc.identifier.citedreferenceHakkim A, Furnrohr BG, Amann K, Laube B, Abed UA, Brinkmann V, et al. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci U S A 2010; 107: 9813 – 8.en_US
dc.identifier.citedreferenceKahlenberg JM, Carmona‐Rivera C, Smith CK, Kaplan MJ. Neutrophil extracellular trap‐associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages. J Immunol 2013; 190: 1217 – 26.en_US
dc.identifier.citedreferenceMetzler KD, Fuchs TA, Nauseef WM, Reumaux D, Roesler J, Schulze I, et al. Myeloperoxidase is required for neutrophil extracellular trap formation: implications for innate immunity. Blood 2011; 117: 953 – 9.en_US
dc.identifier.citedreferenceKirchner T, Moller S, Klinger M, Solbach W, Laskay T, Behnen M. The impact of various reactive oxygen species on the formation of neutrophil extracellular traps. Mediators Inflamm 2012; 2012: 849136.en_US
dc.identifier.citedreferenceLeshner M, Wang S, Lewis C, Zheng H, Chen XA, Santy L, et al. PAD4 mediated histone hypercitrullination induces heterochromatin decondensation and chromatin unfolding to form neutrophil extracellular trap‐like structures. Front Immunol 2012; 3: 307.en_US
dc.identifier.citedreferenceMegens RT, Vijayan S, Lievens D, Doring Y, van Zandvoort MA, Grommes J, et al. Presence of luminal neutrophil extracellular traps in atherosclerosis. Thromb Haemost 2012; 107: 597 – 8.en_US
dc.identifier.citedreferenceFuchs TA, Brill A, Wagner DD. Neutrophil extracellular trap (NET) impact on deep vein thrombosis. Arterioscler Thromb Vasc Biol 2012; 32: 1777 – 83.en_US
dc.identifier.citedreferenceDoring Y, Manthey HD, Drechsler M, Lievens D, Megens RT, Soehnlein O, et al. Auto‐antigenic protein‐DNA complexes stimulate plasmacytoid dendritic cells to promote atherosclerosis. Circulation 2012; 125: 1673 – 83.en_US
dc.identifier.citedreferenceSoehnlein O. Multiple roles for neutrophils in atherosclerosis. Circ Res 2012; 110: 875 – 88.en_US
dc.identifier.citedreferenceDorweiler B, Torzewski M, Dahm M, Kirkpatrick CJ, Lackner KJ, Vahl CF. Subendothelial infiltration of neutrophil granulocytes and liberation of matrix‐destabilizing enzymes in an experimental model of human neo‐intima. Thromb Haemost 2008; 99: 373 – 81.en_US
dc.identifier.citedreferenceHochberg MC, for the Diagnostic and Therapeutic Criteria Committee of the American College of Rheumatology. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus [letter]. Arthritis Rheum 1997; 40: 1725.en_US
dc.identifier.citedreferenceIsenberg D, Bacon P, Bombardier C, Gladman D, Goldsmith CH, Kalunian K, et al. Criteria for assessing disease activity in systemic lupus erythematosus. J Rheumatol 1989; 16: 1395 – 6.en_US
dc.identifier.citedreferenceVivekanandan‐Giri A, Byun J, Pennathur S. Quantitative analysis of amino acid oxidation markers by tandem mass spectrometry. Methods Enzymol 2011; 491: 73 – 89.en_US
dc.identifier.citedreferenceKhera AV, Cuchel M, de la Llera‐Moya M, Rodrigues A, Burke MF, Jafri K, et al. Cholesterol efflux capacity, high‐density lipoprotein function, and atherosclerosis. N Engl J Med 2011; 364: 127 – 35.en_US
dc.identifier.citedreferenceBergt C, Marsche G, Panzenboeck U, Heinecke JW, Malle E, Sattler W. Human neutrophils employ the myeloperoxidase/hydrogen peroxide/chloride system to oxidatively damage apolipoprotein A‐I. Eur J Biochem 2001; 268: 3523 – 31.en_US
dc.identifier.citedreferenceGoud AP, Goud PT, Diamond MP, Gonik B, Abu‐Soud HM. Activation of the cGMP signaling pathway is essential in delaying oocyte aging in diabetes mellitus. Biochemistry 2006; 45: 11366 – 78.en_US
dc.identifier.citedreferenceCausey CP, Jones JE, Slack JL, Kamei D, Jones LE, Subramanian V, et al. The development of N‐α‐(2‐carboxyl)benzoyl‐N(5)‐(2‐fluoro‐1‐iminoethyl)‐l‐ornithine amide (o‐F‐amidine) and N‐α‐(2‐carboxyl)benzoyl‐N(5)‐(2‐chloro‐1‐iminoethyl)‐l‐ornithine amide (o‐Cl‐amidine) as second generation protein arginine deiminase (PAD) inhibitors. J Med Chem 2011; 54: 6919 – 35.en_US
dc.identifier.citedreferenceBrennan ML, Anderson MM, Shih DM, Qu XD, Wang X, Mehta AC, et al. Increased atherosclerosis in myeloperoxidase‐deficient mice. J Clin Invest 2001; 107: 419 – 30.en_US
dc.identifier.citedreferenceCarmona‐Rivera C, Zhao W, Yalavarthi S, Kaplan MJ. Neutrophil extracellular traps induce endothelial dysfunction in systemic lupus erythematosus through the activation of matrix metalloproteinase‐2. Ann Rheum Dis 2014. E‐pub ahead of print.en_US
dc.identifier.citedreferenceFox R. Anti‐malarial drugs: possible mechanisms of action in autoimmune disease and prospects for drug development. Lupus 1996; 5 Suppl 1: S4 – 10.en_US
dc.identifier.citedreferenceKahlenberg JM, Kaplan MJ. Mechanisms of premature atherosclerosis in rheumatoid arthritis and lupus. Annu Rev Med 2013; 64: 249 – 63.en_US
dc.identifier.citedreferenceEsdaile JM, Abrahamowicz M, Grodzicky T, Li Y, Panaritis C, du Berger R, et al. Traditional Framingham risk factors fail to fully account for accelerated atherosclerosis in systemic lupus erythematosus. Arthritis Rheum 2001; 44: 2331 – 7.en_US
dc.identifier.citedreferenceRonda N, Favari E, Borghi MO, Ingegnoli F, Gerosa M, Chighizola C, et al. Impaired serum cholesterol efflux capacity in rheumatoid arthritis and systemic lupus erythematosus. Ann Rheum Dis 2014; 73: 609 – 15.en_US
dc.identifier.citedreferenceVillanueva E, Yalavarthi S, Berthier CC, Hodgin JB, Khandpur R, Lin AM, et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J Immunol 2011; 187: 538 – 52.en_US
dc.identifier.citedreferenceThacker SG, Zhao W, Smith CK, Luo W, Wang H, Vivekanandan‐Giri A, et al. Type I interferons modulate vascular function, repair, thrombosis, and plaque progression in murine models of lupus and atherosclerosis. Arthritis Rheum 2012; 64: 2975 – 85.en_US
dc.identifier.citedreferenceKnight JS, Zhao W, Luo W, Subramanian V, O'Dell AA, Yalavarthi S, et al. Peptidylarginine deiminase inhibition is immunomodulatory and vasculoprotective in murine lupus. J Clin Invest 2013; 123: 2981 – 93.en_US
dc.identifier.citedreferenceDenny MF, Yalavarthi S, Zhao W, Thacker SG, Anderson M, Sandy AR, et al. A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I IFNs. J Immunol 2010; 184: 3284 – 97.en_US
dc.identifier.citedreferenceVivekanandan‐Giri A, Slocum JL, Byun J, Tang C, Sands RL, Gillespie BW, et al. High density lipoprotein is targeted for oxidation by myeloperoxidase in rheumatoid arthritis. Ann Rheum Dis 2013; 72: 1725 – 31.en_US
dc.identifier.citedreferenceMcMahon M, Grossman J, Skaggs B, FitzGerald J, Sahakian L, Ragavendra N, et al. Dysfunctional proinflammatory high‐density lipoproteins confer increased risk of atherosclerosis in women with systemic lupus erythematosus. Arthritis Rheum 2009; 60: 2428 – 37.en_US
dc.identifier.citedreferenceAnsell BJ, Fonarow GC, Fogelman AM. The paradox of dysfunctional high‐density lipoprotein. Curr Opin Lipidol 2007; 18: 427 – 34.en_US
dc.identifier.citedreferenceZhang R, Brennan ML, Fu X, Aviles RJ, Pearce GL, Penn MS, et al. Association between myeloperoxidase levels and risk of coronary artery disease. JAMA 2001; 286: 2136 – 42.en_US
dc.identifier.citedreferenceKarakas M, Koenig W. Myeloperoxidase production by macrophage and risk of atherosclerosis. Curr Atheroscler Rep 2012; 14: 277 – 83.en_US
dc.identifier.citedreferenceShao B, Pennathur S, Heinecke JW. Myeloperoxidase targets apolipoprotein A‐I, the major high density lipoprotein protein, for site‐specific oxidation in human atherosclerotic lesions. J Biol Chem 2012; 287: 6375 – 86.en_US
dc.identifier.citedreferenceShao B, Bergt C, Fu X, Green P, Voss JC, Oda MN, et al. Tyrosine 192 in apolipoprotein A‐I is the major site of nitration and chlorination by myeloperoxidase, but only chlorination markedly impairs ABCA1‐dependent cholesterol transport. J Biol Chem 2005; 280: 5983 – 93.en_US
dc.identifier.citedreferenceAssinger A, Koller F, Schmid W, Zellner M, Babeluk R, Koller E, et al. Specific binding of hypochlorite‐oxidized HDL to platelet CD36 triggers proinflammatory and procoagulant effects. Atherosclerosis 2010; 212: 153 – 60.en_US
dc.identifier.citedreferenceSuzuki M, Pritchard DK, Becker L, Hoofnagle AN, Tanimura N, Bammler TK, et al. High‐density lipoprotein suppresses the type I interferon response, a family of potent antiviral immunoregulators, in macrophages challenged with lipopolysaccharide. Circulation 2010; 122: 1919 – 27.en_US
dc.identifier.citedreferenceFurst DE. Pharmacokinetics of hydroxychloroquine and chloroquine during treatment of rheumatic diseases. Lupus 1996; 5 Suppl 1: S11 – 5.en_US
dc.identifier.citedreferencePennathur S, Bergt C, Shao B, Byun J, Kassim SY, Singh P, et al. Human atherosclerotic intima and blood of patients with established coronary artery disease contain high density lipoprotein damaged by reactive nitrogen species. J Biol Chem 2004; 279: 42977 – 83.en_US
dc.identifier.citedreferenceGriendling KK. Novel NAD P H oxidases in the cardiovascular system. Heart 2004; 90: 491 – 3.en_US
dc.identifier.citedreferenceKubala L, Lu G, Baldus S, Berglund L, Eiserich JP. Plasma levels of myeloperoxidase are not elevated in patients with stable coronary artery disease. Clin Chim Acta 2008; 394: 59 – 62.en_US
dc.identifier.citedreferenceTelles RW, Ferreira GA, da Silva NP, Sato EI. Increased plasma myeloperoxidase levels in systemic lupus erythematosus. Rheumatol Int 2010; 30: 779 – 84.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.