Show simple item record

Extra‐nigral pathological conditions are common in Parkinson's disease with freezing of gait: An in vivo positron emission tomography study

dc.contributor.authorBohnen, Nicolaas I.en_US
dc.contributor.authorFrey, Kirk A.en_US
dc.contributor.authorStudenski, Stephanieen_US
dc.contributor.authorKotagal, Vikasen_US
dc.contributor.authorKoeppe, Robert A.en_US
dc.contributor.authorConstantine, Gregory M.en_US
dc.contributor.authorScott, Peter J.H.en_US
dc.contributor.authorAlbin, Roger L.en_US
dc.contributor.authorMüller, Martijn L.t.m.en_US
dc.date.accessioned2014-09-03T16:52:14Z
dc.date.availableWITHHELD_12_MONTHSen_US
dc.date.available2014-09-03T16:52:14Z
dc.date.issued2014-08en_US
dc.identifier.citationBohnen, Nicolaas I.; Frey, Kirk A.; Studenski, Stephanie; Kotagal, Vikas; Koeppe, Robert A.; Constantine, Gregory M.; Scott, Peter J.H.; Albin, Roger L.; Müller, Martijn L.t.m. (2014). "Extraâ nigral pathological conditions are common in Parkinson's disease with freezing of gait: An in vivo positron emission tomography study." Movement Disorders 29(9): 1118-1124.en_US
dc.identifier.issn0885-3185en_US
dc.identifier.issn1531-8257en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108363
dc.description.abstractCholinergic denervation has been associated with falls and slower gait speed and β‐amyloid deposition with greater severity of axial motor impairments in Parkinson disease (PD). However, little is known about the association between the presence of extra‐nigral pathological conditions and freezing of gait (FoG). Patients with PD (n = 143; age, 65.5 ± 7.4 years, Hoehn and Yahr stage, 2.4 ± 0.6; Montreal Cognitive Assessment score, 25.9 ± 2.6) underwent [ 11 C]methyl‐4‐piperidinyl propionate acetylcholinesterase and [ 11 C]dihydrotetrabenazine dopaminergic PET imaging, and clinical, including FoG, assessment in the dopaminergic “off” state. A subset of subjects (n = 61) underwent [ 11 C]Pittsburgh compound‐B β‐amyloid positron emission tomography (PET) imaging. Normative data were used to dichotomize abnormal β‐amyloid uptake or cholinergic deficits. Freezing of gait was present in 20 patients (14.0%). Freezers had longer duration of disease ( P  = 0.009), more severe motor disease ( P  < 0.0001), and lower striatal dopaminergic activity ( P  = 0.013) compared with non‐freezers. Freezing of gait was more common in patients with diminished neocortical cholinergic innervation (23.9%, χ 2  = 5.56, P  = 0.018), but not in the thalamic cholinergic denervation group (17.4%, χ 2  = 0.26, P  = 0.61). Subgroup analysis showed higher frequency of FoG with increased neocortical β‐amyloid deposition (30.4%, Fisher Exact test: P  = 0.032). Frequency of FoG was lowest with absence of both pathological conditions (4.8%), intermediate in subjects with single extra‐nigral pathological condition (14.3%), and highest with combined neocortical cholinopathy and amyloidopathy (41.7%; Cochran‐Armitage trend test, Z  = 2.63, P  = 0.015). Within the group of freezers, 90% had at least one of the two extra‐nigral pathological conditions studied. Extra‐nigral pathological conditions, in particular the combined presence of cortical cholinopathy and amyloidopathy, are common in PD with FoG and may contribute to its pathophysiology. © 2014 International Parkinson and Movement Disorder Societyen_US
dc.publisherExcerpta Medicaen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherGait Freezingen_US
dc.subject.otherDopamineen_US
dc.subject.otherβ‐Amyloiden_US
dc.subject.otherAcetylcholineen_US
dc.subject.otherPETen_US
dc.subject.otherParkinson's Diseaseen_US
dc.titleExtra‐nigral pathological conditions are common in Parkinson's disease with freezing of gait: An in vivo positron emission tomography studyen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108363/1/mds25929.pdf
dc.identifier.doi10.1002/mds.25929en_US
dc.identifier.sourceMovement Disordersen_US
dc.identifier.citedreferenceKlunk WE, Engler E, Nordberg A, et al. Imaging brain amyloid in Alzheimer's disease using the novel positron emission tomography tracer, Pittsburgh Compound‐B. Ann Neurol 2004; 55: 306 ‐ 319.en_US
dc.identifier.citedreferenceAlves G, Larsen JP, Emre M, Wentzel‐Larsen T, Aarsland D. Changes in motor subtype and risk for incident dementia in Parkinson's disease. Mov Disord 2006; 21: 1123 ‐ 1130.en_US
dc.identifier.citedreferenceMuller ML, Albin RL, Kotagal V, et al. Thalamic cholinergic innervation and postural sensory integration function in Parkinson's disease. Brain 2013; 136: 3282 ‐ 3289.en_US
dc.identifier.citedreferenceKarachi C, Grabli D, Bernard FA, et al. Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease. J Clin Invest 2010; 120: 2745 ‐ 2754.en_US
dc.identifier.citedreferenceGiladi N, Horak FB, Hausdorff JM. Classification of gait disturbances: distinguishing between continuous and episodic changes. Mov Disord 2013; 28: 1469 ‐ 1473.en_US
dc.identifier.citedreferenceShine JM, Matar E, Ward PB, et al. Freezing of gait in Parkinson's disease is associated with functional decoupling between the cognitive control network and the basal ganglia. Brain 2013; 136: 3671 ‐ 3681.en_US
dc.identifier.citedreferenceSchaafsma JD, Giladi N, Balash Y, Bartels AL, Gurevich T, Hausdorff JM. Gait dynamics in Parkinson's disease: relationship to Parkinsonian features, falls and response to levodopa. J Neurol Sci 2003; 212: 47 ‐ 53.en_US
dc.identifier.citedreferenceBallanger B, Lozano AM, Moro E, et al. Cerebral blood flow changes induced by pedunculopontine nucleus stimulation in patients with advanced Parkinson's disease: a [(15)O] H2O PET study. Hum Brain Mapp 2009; 30: 3901 ‐ 3909.en_US
dc.identifier.citedreferenceFling BW, Cohen RG, Mancini M, Nutt JG, Fair DA, Horak FB. Asymmetric pedunculopontine network connectivity in parkinsonian patients with freezing of gait. Brain 2013; 136: 2405 ‐ 2418.en_US
dc.identifier.citedreferenceShine JM, Matar E, Ward PB, et al. Exploring the cortical and subcortical functional magnetic resonance imaging changes associated with freezing in Parkinson's disease. Brain 2013; 136: 1204 ‐ 1215.en_US
dc.identifier.citedreferenceTessitore A, Amboni M, Esposito F, et al. Resting‐state brain connectivity in patients with Parkinson's disease and freezing of gait. Parkinsonism Relat Disord 2012; 18: 781 ‐ 787.en_US
dc.identifier.citedreferenceBartels AL, Leenders KL. Brain imaging in patients with freezing of gait. Mov Disord 2008; 23 Suppl 2: S461 ‐ 467.en_US
dc.identifier.citedreferenceSnijders AH, Leunissen I, Bakker M, et al. Gait‐related cerebral alterations in patients with Parkinson's disease with freezing of gait. Brain 2011; 134: 59 ‐ 72.en_US
dc.identifier.citedreferenceAizenstein HJ, Nebes RD, Saxton JA, et al. Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch Neurol 2008; 65: 1509 ‐ 1517.en_US
dc.identifier.citedreferencePrice JC, Klunk WE, Lopresti BJ, et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh compound‐B. J Cereb Blood Flow Metab 2005; 25: 1528 ‐ 1547.en_US
dc.identifier.citedreferenceLogan J, Fowler JS, Volkow ND, Ding YS, Wang GJ, Alexoff DL. A strategy for removing the bias in the graphical analysis method. J Cereb Blood Flow Metab 2001; 21: 307 ‐ 320.en_US
dc.identifier.citedreferenceLopez IC, Ruiz PJ, Del Pozo SV, Bernardos VS. Motor complications in Parkinson's disease: ten year follow‐up study. Mov Disord 2010; 25: 2735 ‐ 2739.en_US
dc.identifier.citedreferenceVu TC, Nutt JG, Holford NH. Progression of motor and nonmotor features of Parkinson's disease and their response to treatment. Br J Clin Pharmacol 2012; 74: 267 ‐ 283.en_US
dc.identifier.citedreferenceFrey KA, Koeppe RA, Kilbourn MR, et al. Presynaptic monoaminergic vesicles in Parkinson's disease and normal aging. Ann Neurol 1996; 40: 873 ‐ 884.en_US
dc.identifier.citedreferenceBohnen NI, Muller MLTM, Kotagal V, et al. Heterogeneity of cholinergic denervation in Parkinson disease J Cereb Blood Flow Metab 2012; 32: 1609 ‐ 1617.en_US
dc.identifier.citedreferenceDonaghy P, Thomas AJ, O'Brien JT. Amyloid PET imaging in Lewy body disorders. Am J Geriatr Psychiatry 2013. DOI: 10.1016/j.jagp.2013.03.001.en_US
dc.identifier.citedreferenceBohnen NI, Muller ML, Koeppe RA, et al. History of falls in Parkinson disease is associated with reduced cholinergic activity. Neurology 2009; 73: 1670 ‐ 1676.en_US
dc.identifier.citedreferenceBohnen NI, Frey KA, Studenski S, et al. Gait speed in Parkinson disease correlates with cholinergic degeneration. Neurology 2013; 81: 1611 ‐ 1616.en_US
dc.identifier.citedreferenceMuller ML, Frey KA, Petrou M, et al. β‐amyloid and postural instability and gait difficulty in Parkinson's disease at risk for dementia. Mov Disord 2013; 28: 296 ‐ 301.en_US
dc.identifier.citedreferenceHughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinicopathologic study of 100 cases. J Neurol Neurosurg Psychiatry 1992; 55: 181 ‐ 184.en_US
dc.identifier.citedreferenceGoetz CG, Poewe W, Rascol O, et al. Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: status and recommendations. Mov Disord 2004; 19: 1020 ‐ 1028.en_US
dc.identifier.citedreferenceGoetz CG, Fahn S, Martinez‐Martin P, et al. Movement Disorder Society‐sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS‐UPDRS): process, format, and clinimetric testing plan. Mov Disord 2007; 22: 41 ‐ 47.en_US
dc.identifier.citedreferenceSnijders AH, Haaxma CA, Hagen YJ, Munneke M, Bloem BR. Freezer or non‐freezer: clinical assessment of freezing of gait. Parkinsonism Relat Disord 2012; 18: 149 ‐ 154.en_US
dc.identifier.citedreferencePetrou M, Bohnen NI, Muller ML, Koeppe RA, Albin RL, Frey KA. Abeta‐amyloid deposition in patients with Parkinson disease at risk for development of dementia. Neurology 2012; 79: 1161 ‐ 1167.en_US
dc.identifier.citedreferenceNasreddine ZS, Phillips NA, Bedirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005; 53: 695 ‐ 699.en_US
dc.identifier.citedreferenceShao X, Hoareau R, Hockley BG, et al. Highlighting the Versatility of the Tracerlab Synthesis Modules. Part 1: Fully automated production of [F]labelled radiopharmaceuticals using a Tracerlab FX(FN). J Labelled Comp Radiopharm 2011; 54: 292 ‐ 307.en_US
dc.identifier.citedreferenceHeckers S, Geula C, Mesulam M. Cholinergic innervation of the human thalamus: dual origin and differential nuclear distribution. J Comp Neurol 1992; 325: 68 ‐ 82.en_US
dc.identifier.citedreferenceNagatsuka S, Fukushi K, Shinotoh H, et al. Kinetic analysis of [( 11 )C]MP4A using a high‐radioactivity brain region that represents an integrated input function for measurement of cerebral acetylcholinesterase activity without arterial blood sampling. J Cereb Blood Flow Metab 2001; 21: 1354 ‐ 1366.en_US
dc.identifier.citedreferenceKoeppe RA, Frey KA, Kuhl DE, Kilbourn MR. Assessment of extrastriatal vesicular monoamine transporter binding site density using stereoisomers of [ 11 C]dihydrotetrabenazine. J Cereb Blood Flow Metab 1999; 19: 1376 ‐ 1384.en_US
dc.identifier.citedreferenceMinoshima S, Koeppe RA, Fessler JA, et al. Integrated and automated data analysis method for neuronal activation studying using O 15 water PET. In: Uemura K, Lassen NA, Jones T, Kanno I, eds. Quantification of Brain Function to Tracer Kinetics and Image Analysis in Brain PET. Tokyo: Excerpta Medica, 1993: 409 ‐ 418.en_US
dc.identifier.citedreferenceKoeppe RA, Frey KA, Kume A, Albin R, Kilbourn MR, Kuhl DE. Equilibrium versus compartmental analysis for assessment of the vesicular monoamine transporter using (+)‐alpha‐[ 11 C]dihydrotetrabenazine (DTBZ) and positron emission tomography. J Cereb Blood Flow Metab 1997; 17: 919 ‐ 931.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.