The magnetic structure of Saturn's magnetosheath
dc.contributor.author | Sulaiman, A. H. | en_US |
dc.contributor.author | Masters, A. | en_US |
dc.contributor.author | Dougherty, M. K. | en_US |
dc.contributor.author | Jia, X. | en_US |
dc.date.accessioned | 2014-09-03T16:52:19Z | |
dc.date.available | WITHHELD_11_MONTHS | en_US |
dc.date.available | 2014-09-03T16:52:19Z | |
dc.date.issued | 2014-07 | en_US |
dc.identifier.citation | Sulaiman, A. H.; Masters, A.; Dougherty, M. K.; Jia, X. (2014). "The magnetic structure of Saturn's magnetosheath." Journal of Geophysical Research: Space Physics 119(7): 5651-5661. | en_US |
dc.identifier.issn | 2169-9380 | en_US |
dc.identifier.issn | 2169-9402 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/108372 | |
dc.description.abstract | A planet's magnetosheath extends from downstream of its bow shock up to the magnetopause, where the solar wind flow is deflected around the magnetosphere and the solar wind‐embedded magnetic field lines are draped. This makes the region an important site for plasma turbulence, instabilities, reconnection, and plasma depletion layers. A relatively high Alfvén Mach number solar wind and a polar‐flattened magnetosphere make the magnetosheath of Saturn both physically and geometrically distinct from the Earth's. The polar flattening is predicted to affect the magnetosheath magnetic field structure and thus the solar wind‐magnetosphere interaction. Here we investigate the magnetic field in the magnetosheath with the expectation that polar flattening is manifested in the overall draping pattern. We compare an accumulation of Cassini data between 2004 and 2010 with global magnetohydrodynamic (MHD) simulations and an analytical model representative of a draped field between axisymmetric boundaries. The draping patterns measured are well captured and in broad agreement for given upstream conditions with those of the MHD simulations (which include polar flattening). The deviations from the analytical model, based on no polar flattening, suggest that nonaxisymmetry is invariably a key feature of the magnetosphere's global structure. Our results show a comprehensive overview of the configuration of the magnetic field in a nonaxisymmetric magnetosheath as revealed by Cassini. We anticipate our assessment to provide an insight to this barely studied interface between a high Alfvénic bow shock and a dynamic magnetosphere. Key Points Dayside magnetosheath has a draping pattern organized with respect to local time Nonaxisymmetry is invariably a key feature of Saturn's magnetosphere Draping can be predicted to an extent using an analytical model | en_US |
dc.publisher | Wiley Periodicals, Inc. | en_US |
dc.publisher | AGU | en_US |
dc.subject.other | Magnetosheath | en_US |
dc.subject.other | Saturn | en_US |
dc.subject.other | Magnetic Field Draping | en_US |
dc.title | The magnetic structure of Saturn's magnetosheath | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Astronomy and Astrophysics | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/108372/1/jgra51177.pdf | |
dc.identifier.doi | 10.1002/2014JA020019 | en_US |
dc.identifier.source | Journal of Geophysical Research: Space Physics | en_US |
dc.identifier.citedreference | Petrinec, S. M. ( 2012 ), On the magnetic field configutation of the magnetosheath, Terr. Atmos. Oceanic Sci., 24, 265 – 272, doi: 10.3319/TAO.2012.10.17.02(SEC). | en_US |
dc.identifier.citedreference | Jackman, C. M., R. J. Forsyth, and M. K. Dougherty ( 2008 ), The overall configuration of the interplanetary magnetic field upstream of Saturn as revealed by Cassini observations, J. Geophys. Res., 113, A08114, doi: 10.1029/2008JA013083. | en_US |
dc.identifier.citedreference | Jia, X., K. C. Hansen, T. I. Gombosi, M. G. Kivelson, G. Tóth, D. L. DeZeeuw, and A. J. Ridley ( 2012 ), Magnetospheric configuration and dynamics of Saturn's magnetosphere: A global MHD simulation, J. Geophys. Res., 117, A05225, doi: 10.1029/2012JA017575. | en_US |
dc.identifier.citedreference | Kanani, S. J., et al. ( 2010 ), A new form of Saturn's magnetopause using a dynamic pressure balance model, based on in situ, multi‐instrument Cassini measurements, J. Geophys. Res., 115, A06207, doi: 10.1029/2009JA014262. | en_US |
dc.identifier.citedreference | Kobel, E., and E. O. Flückiger ( 1994 ), A model of the steady state magnetic field in the magnetosheath, J. Geophys. Res., 99, 23,617 – 23,622, doi: 10.1029/94JA01778. | en_US |
dc.identifier.citedreference | Lepping, R. P., N. Achilleos, J. C. Cutler, A. J. Coates, M. K. Dougherty, and G. H. Jones ( 1981 ), Surface waves on Saturn's magnetopause, Nature, 292, 750 – 753, doi: 10.1038/292750a0. | en_US |
dc.identifier.citedreference | Longmore, M., S. J. Schwartz, and E. A. Lucek ( 2006 ), Rotation of the magnetic field in Earth's magnetosheath by bulk magnetosheath plasma flow, Ann. Geophys., 24, 339 – 354, doi: 10.5194/angeo‐24‐339‐2006. | en_US |
dc.identifier.citedreference | Masters, A., J. P. Eastwood, M. Swisdak, M. F. Thomsen, C. T. Russell, N. Sergis, F. J. Crary, M. K. Dougherty, A. J. Coates, and S. M. Krimigis ( 2012 ), The importance of plasma β conditions for magnetic reconnection at Saturn's magnetopause, Geophys. Res. Lett., 39, L08103, doi: 10.1029/2012GL051372. | en_US |
dc.identifier.citedreference | Masters, A., T. D. Phan, S. V. Badman, H. Hasegawa, M. Fujimoto, C. T. Russell, A. J. Coates, and M. K. Dougherty ( 2014 ), The plasma depletion layer in Saturn's magnetosheath, J. Geophys. Res. Space Physics, 119, 121 – 130, doi: 10.1002/2013JA019516. | en_US |
dc.identifier.citedreference | Mistry, R., M. K. Dougherty, A. Masters, A. H. Sulaiman, and E. J. Allen ( 2014 ), Separating drivers of Saturnian magnetopause motion, J. Geophys. Res. Space Physics, 119, 1514 – 1522, doi: 10.1002/2013JA019489. | en_US |
dc.identifier.citedreference | Richardson, J. D. ( 2002 ), The magnetosheaths of the outer planets, Planet. Space Sci., 50, 503 – 517, doi: 10.1016/S0032‐0633(02)00029‐6. | en_US |
dc.identifier.citedreference | Russell, C. T. ( 1976 ), Reconnection, in Physics of Solar Planetary Environments, edited by D. J. Williams, pp. 526 – 540, AGU, Washington, D. C. | en_US |
dc.identifier.citedreference | Sergis, N., C. M. Jackman, A. Masters, S. M. Krimigis, M. F. Thomsen, D. C. Hamilton, D. G. Mitchell, M. K. Dougherty, and A. J. Coates ( 2013 ), Particle and magnetic field properties of the Saturnian magnetosheath: Presence and upstream escape of hot magnetospheric plasma, J. Geophys. Res. Space Physics, 118, 1620 – 1634, doi: 10.1002/jgra.50164. | en_US |
dc.identifier.citedreference | Slavin, J. A., E. J. Smith, J. R. Spreiter, and S. S. Stahara ( 1985 ), Solar wind flow about the outer planets: Gas dynamic modeling of the Jupiter and Saturn bow shocks, J. Geophys. Res., 90, 6275 – 6286, doi: 10.1029/JA090iA07p06275. | en_US |
dc.identifier.citedreference | Slavin, J. A., et al. ( 2009 ), MESSENGER observations of magnetic reconnection in Mercury's magnetosphere, Science, 324, 606 – 610, doi: 10.1126/science.1172011. | en_US |
dc.identifier.citedreference | Sonnerup, B. U. O. ( 1974 ), Magnetopause reconnection rate, J. Geophys. Res., 79, 1546 – 1549, doi: 10.1029/JA079i010p01546. | en_US |
dc.identifier.citedreference | Spreiter, J. R., and S. S. Stahara ( 1980 ), A new predictive model for determining solar wind‐terrestrial planet interactions, J. Geophys. Res., 85 ( A12 ), 6769 – 6777, doi: 10.1029/JA085iA12p06769. | en_US |
dc.identifier.citedreference | Spreiter, J. R., A. L. Summers, and A. Y. Alksne ( 1966 ), Hydrodynamic flow around the magnetosphere, Planet. Space Sci., 14, 223 – 253, doi: 10.1016/0032‐0633(66)90124‐3. | en_US |
dc.identifier.citedreference | Violante, L., M. B. B. Cattaneo, G. Moreno, and J. D. Richardson ( 1995 ), Observations of mirror waves and plasma depletion layer upstream of Saturn's magnetopause, J. Geophys. Res., 100 ( A7 ), 12,047 – 12,055, doi: 10.1029/94JA02703. | en_US |
dc.identifier.citedreference | Went, D. R., G. B. Hospodarsky, A. Masters, K. C. Hansen, and M. K. Dougherty ( 2011 ), A new semiempirical model of Saturn's bow shock based on propagated solar wind parameters, J. Geophys. Res., 116, A07202, doi: 10.1029/2010JA016349. | en_US |
dc.identifier.citedreference | Zieger, B., and K. C. Hansen ( 2008 ), Statistical validation of a solar wind propagation model from 1 to 10 AU, J. Geophys. Res., 113, A08107, doi: 10.1029/2008JA013046. | en_US |
dc.identifier.citedreference | Zwan, B. J., and R. A. Wolf ( 1976 ), Depletion of solar wind plasma near a planetary boundary, J. Geophys. Res., 81, 1636 – 1648, doi: 10.1029/JA081i010p01636. | en_US |
dc.identifier.citedreference | Achilleos, N., C. S. Arridge, C. Bertucci, C. M. Jackman, M. K. Dougherty, K. K. Khurana, and C. T. Russell ( 2008 ), Large‐scale dynamics of Saturn's magnetopause: Observations by Cassini, J. Geophys. Res., 113, A11209, doi: 10.1029/2008JA013265. | en_US |
dc.identifier.citedreference | Cooling, B. M. A., C. J. Owen, and S. J. Schwartz ( 2001 ), Role of the magnetosheath flow in determining the motion of open flux tubes, J. Geophys. Res., 106, 18,763 – 18,776, doi: 10.1029/2000JA000455. | en_US |
dc.identifier.citedreference | Crooker, N. U., J. G. Luhmann, C. T. Russell, E. J. Smith, J. R. Spreiter, and S. S. Stahara ( 1985 ), Magnetic field draping against the dayside magnetopause, J. Geophys. Res., 90, 3505 – 3510, doi: 10.1029/JA090iA04p03505. | en_US |
dc.identifier.citedreference | Desroche, M., F. Bagenal, P. A. Delamere, and N. Erkaev ( 2013 ), Conditions at the magnetopause of Saturn and implications for the solar wind interaction, J. Geophys. Res. Space Physics, 118, 3087 – 3095, doi: 10.1002/jgra.50294. | en_US |
dc.identifier.citedreference | DiBraccio, G. A., J. Slavin, S. Boardsen, B. Anderson, H. Korth, T. Zurbuchen, J. Raines, D. Baker, R. McNutt, and S. Solomon ( 2013 ), MESSENGER observations of magnetopause structure and dynamics at Mercury, J. Geophys. Res. Space Physics, 118, 997 – 1008, doi: 10.1002/jgra.50123. | en_US |
dc.identifier.citedreference | Dougherty, M. K., et al. ( 2004 ), The Cassini magnetic field investigation, Space Sci. Rev., 114 ( 1–4 ), 331 – 383, doi: 10.1007/s11214‐004‐1432‐2. | en_US |
dc.identifier.citedreference | Dungey, J. W. ( 1961 ), Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett., 6, 47 – 48, doi: 10.1103/PhysRevLett.6.47. | en_US |
dc.identifier.citedreference | Erkaev, N. V., C. J. Farrugia, and H. K. Biernat ( 1996 ), Effects on the Jovian magnetosheath arising from solar wind flow around nonaxisymmetric bodies, J. Geophys. Res., 101, 10,665 – 10,672, doi: 10.1029/95JA03518. | en_US |
dc.identifier.citedreference | Erkaev, N. V., C. J. Farrugia, B. Harris, and H. K. Biernat ( 2011 ), On accelerated magnetosheath flows under northward IMF, Geophys. Res. Lett., 38, L01104, doi: 10.1029/2010GL045998. | en_US |
dc.identifier.citedreference | Erkaev, N. V., C. J. Farrugia, A. V. Mezentsev, R. B. Torbert, and H. K. Biernat ( 2012 ), Accelerated magnetosheath flows caused by IMF draping: Dependence on latitude, Geophys. Res. Lett., 39, L01103, doi: 10.1029/2011GL050209. | en_US |
dc.identifier.citedreference | Fairfield, D. H. ( 1967 ), The ordered magnetic field of the magnetosheath, J. Geophys. Res., 72, 5865 – 5877, doi: 10.1029/JZ072i023p05865. | en_US |
dc.identifier.citedreference | Farrugia, C. J., H. K. Biernat, and N. V. Erkaev ( 1998 ), The effect of the magnetopause shapes of Jupiter and Saturn on magnetosheath parameters, Planet. Space Sci., 46, 507 – 514, doi: 10.1016/S0032‐0633(97)00225‐0. | en_US |
dc.identifier.citedreference | Gombosi, T. I., G. Tóth, D. L. De Zeeuw, K. C. Hansen, K. Kabin, and K. G. Powell ( 2002 ), Semi‐relativistic magnetohydrodynamics and physics based convergence acceleration, J. Comput. Phys., 177, 176 – 205, doi: 10.1006/jcph.2002.7009. | en_US |
dc.identifier.citedreference | Hendricks, S., F. M. Neubauer, M. K. Dougherty, N. Achilleos, and C. T. Russell ( 2005 ), Variability in Saturn's bow shock and magnetopause from Pioneer and Voyager: Probabilistic predictions and initial observations by Cassini, Geophys. Res. Lett., 32, L20S08, doi: 10.1029/2005GL022569. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.