Show simple item record

The magnetic structure of Saturn's magnetosheath

dc.contributor.authorSulaiman, A. H.en_US
dc.contributor.authorMasters, A.en_US
dc.contributor.authorDougherty, M. K.en_US
dc.contributor.authorJia, X.en_US
dc.date.accessioned2014-09-03T16:52:19Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2014-09-03T16:52:19Z
dc.date.issued2014-07en_US
dc.identifier.citationSulaiman, A. H.; Masters, A.; Dougherty, M. K.; Jia, X. (2014). "The magnetic structure of Saturn's magnetosheath." Journal of Geophysical Research: Space Physics 119(7): 5651-5661.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108372
dc.description.abstractA planet's magnetosheath extends from downstream of its bow shock up to the magnetopause, where the solar wind flow is deflected around the magnetosphere and the solar wind‐embedded magnetic field lines are draped. This makes the region an important site for plasma turbulence, instabilities, reconnection, and plasma depletion layers. A relatively high Alfvén Mach number solar wind and a polar‐flattened magnetosphere make the magnetosheath of Saturn both physically and geometrically distinct from the Earth's. The polar flattening is predicted to affect the magnetosheath magnetic field structure and thus the solar wind‐magnetosphere interaction. Here we investigate the magnetic field in the magnetosheath with the expectation that polar flattening is manifested in the overall draping pattern. We compare an accumulation of Cassini data between 2004 and 2010 with global magnetohydrodynamic (MHD) simulations and an analytical model representative of a draped field between axisymmetric boundaries. The draping patterns measured are well captured and in broad agreement for given upstream conditions with those of the MHD simulations (which include polar flattening). The deviations from the analytical model, based on no polar flattening, suggest that nonaxisymmetry is invariably a key feature of the magnetosphere's global structure. Our results show a comprehensive overview of the configuration of the magnetic field in a nonaxisymmetric magnetosheath as revealed by Cassini. We anticipate our assessment to provide an insight to this barely studied interface between a high Alfvénic bow shock and a dynamic magnetosphere. Key Points Dayside magnetosheath has a draping pattern organized with respect to local time Nonaxisymmetry is invariably a key feature of Saturn's magnetosphere Draping can be predicted to an extent using an analytical modelen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherAGUen_US
dc.subject.otherMagnetosheathen_US
dc.subject.otherSaturnen_US
dc.subject.otherMagnetic Field Drapingen_US
dc.titleThe magnetic structure of Saturn's magnetosheathen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108372/1/jgra51177.pdf
dc.identifier.doi10.1002/2014JA020019en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferencePetrinec, S. M. ( 2012 ), On the magnetic field configutation of the magnetosheath, Terr. Atmos. Oceanic Sci., 24, 265 – 272, doi: 10.3319/TAO.2012.10.17.02(SEC).en_US
dc.identifier.citedreferenceJackman, C. M., R. J. Forsyth, and M. K. Dougherty ( 2008 ), The overall configuration of the interplanetary magnetic field upstream of Saturn as revealed by Cassini observations, J. Geophys. Res., 113, A08114, doi: 10.1029/2008JA013083.en_US
dc.identifier.citedreferenceJia, X., K. C. Hansen, T. I. Gombosi, M. G. Kivelson, G. Tóth, D. L. DeZeeuw, and A. J. Ridley ( 2012 ), Magnetospheric configuration and dynamics of Saturn's magnetosphere: A global MHD simulation, J. Geophys. Res., 117, A05225, doi: 10.1029/2012JA017575.en_US
dc.identifier.citedreferenceKanani, S. J., et al. ( 2010 ), A new form of Saturn's magnetopause using a dynamic pressure balance model, based on in situ, multi‐instrument Cassini measurements, J. Geophys. Res., 115, A06207, doi: 10.1029/2009JA014262.en_US
dc.identifier.citedreferenceKobel, E., and E. O. Flückiger ( 1994 ), A model of the steady state magnetic field in the magnetosheath, J. Geophys. Res., 99, 23,617 – 23,622, doi: 10.1029/94JA01778.en_US
dc.identifier.citedreferenceLepping, R. P., N. Achilleos, J. C. Cutler, A. J. Coates, M. K. Dougherty, and G. H. Jones ( 1981 ), Surface waves on Saturn's magnetopause, Nature, 292, 750 – 753, doi: 10.1038/292750a0.en_US
dc.identifier.citedreferenceLongmore, M., S. J. Schwartz, and E. A. Lucek ( 2006 ), Rotation of the magnetic field in Earth's magnetosheath by bulk magnetosheath plasma flow, Ann. Geophys., 24, 339 – 354, doi: 10.5194/angeo‐24‐339‐2006.en_US
dc.identifier.citedreferenceMasters, A., J. P. Eastwood, M. Swisdak, M. F. Thomsen, C. T. Russell, N. Sergis, F. J. Crary, M. K. Dougherty, A. J. Coates, and S. M. Krimigis ( 2012 ), The importance of plasma β conditions for magnetic reconnection at Saturn's magnetopause, Geophys. Res. Lett., 39, L08103, doi: 10.1029/2012GL051372.en_US
dc.identifier.citedreferenceMasters, A., T. D. Phan, S. V. Badman, H. Hasegawa, M. Fujimoto, C. T. Russell, A. J. Coates, and M. K. Dougherty ( 2014 ), The plasma depletion layer in Saturn's magnetosheath, J. Geophys. Res. Space Physics, 119, 121 – 130, doi: 10.1002/2013JA019516.en_US
dc.identifier.citedreferenceMistry, R., M. K. Dougherty, A. Masters, A. H. Sulaiman, and E. J. Allen ( 2014 ), Separating drivers of Saturnian magnetopause motion, J. Geophys. Res. Space Physics, 119, 1514 – 1522, doi: 10.1002/2013JA019489.en_US
dc.identifier.citedreferenceRichardson, J. D. ( 2002 ), The magnetosheaths of the outer planets, Planet. Space Sci., 50, 503 – 517, doi: 10.1016/S0032‐0633(02)00029‐6.en_US
dc.identifier.citedreferenceRussell, C. T. ( 1976 ), Reconnection, in Physics of Solar Planetary Environments, edited by D. J. Williams, pp. 526 – 540, AGU, Washington, D. C.en_US
dc.identifier.citedreferenceSergis, N., C. M. Jackman, A. Masters, S. M. Krimigis, M. F. Thomsen, D. C. Hamilton, D. G. Mitchell, M. K. Dougherty, and A. J. Coates ( 2013 ), Particle and magnetic field properties of the Saturnian magnetosheath: Presence and upstream escape of hot magnetospheric plasma, J. Geophys. Res. Space Physics, 118, 1620 – 1634, doi: 10.1002/jgra.50164.en_US
dc.identifier.citedreferenceSlavin, J. A., E. J. Smith, J. R. Spreiter, and S. S. Stahara ( 1985 ), Solar wind flow about the outer planets: Gas dynamic modeling of the Jupiter and Saturn bow shocks, J. Geophys. Res., 90, 6275 – 6286, doi: 10.1029/JA090iA07p06275.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2009 ), MESSENGER observations of magnetic reconnection in Mercury's magnetosphere, Science, 324, 606 – 610, doi: 10.1126/science.1172011.en_US
dc.identifier.citedreferenceSonnerup, B. U. O. ( 1974 ), Magnetopause reconnection rate, J. Geophys. Res., 79, 1546 – 1549, doi: 10.1029/JA079i010p01546.en_US
dc.identifier.citedreferenceSpreiter, J. R., and S. S. Stahara ( 1980 ), A new predictive model for determining solar wind‐terrestrial planet interactions, J. Geophys. Res., 85 ( A12 ), 6769 – 6777, doi: 10.1029/JA085iA12p06769.en_US
dc.identifier.citedreferenceSpreiter, J. R., A. L. Summers, and A. Y. Alksne ( 1966 ), Hydrodynamic flow around the magnetosphere, Planet. Space Sci., 14, 223 – 253, doi: 10.1016/0032‐0633(66)90124‐3.en_US
dc.identifier.citedreferenceViolante, L., M. B. B. Cattaneo, G. Moreno, and J. D. Richardson ( 1995 ), Observations of mirror waves and plasma depletion layer upstream of Saturn's magnetopause, J. Geophys. Res., 100 ( A7 ), 12,047 – 12,055, doi: 10.1029/94JA02703.en_US
dc.identifier.citedreferenceWent, D. R., G. B. Hospodarsky, A. Masters, K. C. Hansen, and M. K. Dougherty ( 2011 ), A new semiempirical model of Saturn's bow shock based on propagated solar wind parameters, J. Geophys. Res., 116, A07202, doi: 10.1029/2010JA016349.en_US
dc.identifier.citedreferenceZieger, B., and K. C. Hansen ( 2008 ), Statistical validation of a solar wind propagation model from 1 to 10 AU, J. Geophys. Res., 113, A08107, doi: 10.1029/2008JA013046.en_US
dc.identifier.citedreferenceZwan, B. J., and R. A. Wolf ( 1976 ), Depletion of solar wind plasma near a planetary boundary, J. Geophys. Res., 81, 1636 – 1648, doi: 10.1029/JA081i010p01636.en_US
dc.identifier.citedreferenceAchilleos, N., C. S. Arridge, C. Bertucci, C. M. Jackman, M. K. Dougherty, K. K. Khurana, and C. T. Russell ( 2008 ), Large‐scale dynamics of Saturn's magnetopause: Observations by Cassini, J. Geophys. Res., 113, A11209, doi: 10.1029/2008JA013265.en_US
dc.identifier.citedreferenceCooling, B. M. A., C. J. Owen, and S. J. Schwartz ( 2001 ), Role of the magnetosheath flow in determining the motion of open flux tubes, J. Geophys. Res., 106, 18,763 – 18,776, doi: 10.1029/2000JA000455.en_US
dc.identifier.citedreferenceCrooker, N. U., J. G. Luhmann, C. T. Russell, E. J. Smith, J. R. Spreiter, and S. S. Stahara ( 1985 ), Magnetic field draping against the dayside magnetopause, J. Geophys. Res., 90, 3505 – 3510, doi: 10.1029/JA090iA04p03505.en_US
dc.identifier.citedreferenceDesroche, M., F. Bagenal, P. A. Delamere, and N. Erkaev ( 2013 ), Conditions at the magnetopause of Saturn and implications for the solar wind interaction, J. Geophys. Res. Space Physics, 118, 3087 – 3095, doi: 10.1002/jgra.50294.en_US
dc.identifier.citedreferenceDiBraccio, G. A., J. Slavin, S. Boardsen, B. Anderson, H. Korth, T. Zurbuchen, J. Raines, D. Baker, R. McNutt, and S. Solomon ( 2013 ), MESSENGER observations of magnetopause structure and dynamics at Mercury, J. Geophys. Res. Space Physics, 118, 997 – 1008, doi: 10.1002/jgra.50123.en_US
dc.identifier.citedreferenceDougherty, M. K., et al. ( 2004 ), The Cassini magnetic field investigation, Space Sci. Rev., 114 ( 1–4 ), 331 – 383, doi: 10.1007/s11214‐004‐1432‐2.en_US
dc.identifier.citedreferenceDungey, J. W. ( 1961 ), Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett., 6, 47 – 48, doi: 10.1103/PhysRevLett.6.47.en_US
dc.identifier.citedreferenceErkaev, N. V., C. J. Farrugia, and H. K. Biernat ( 1996 ), Effects on the Jovian magnetosheath arising from solar wind flow around nonaxisymmetric bodies, J. Geophys. Res., 101, 10,665 – 10,672, doi: 10.1029/95JA03518.en_US
dc.identifier.citedreferenceErkaev, N. V., C. J. Farrugia, B. Harris, and H. K. Biernat ( 2011 ), On accelerated magnetosheath flows under northward IMF, Geophys. Res. Lett., 38, L01104, doi: 10.1029/2010GL045998.en_US
dc.identifier.citedreferenceErkaev, N. V., C. J. Farrugia, A. V. Mezentsev, R. B. Torbert, and H. K. Biernat ( 2012 ), Accelerated magnetosheath flows caused by IMF draping: Dependence on latitude, Geophys. Res. Lett., 39, L01103, doi: 10.1029/2011GL050209.en_US
dc.identifier.citedreferenceFairfield, D. H. ( 1967 ), The ordered magnetic field of the magnetosheath, J. Geophys. Res., 72, 5865 – 5877, doi: 10.1029/JZ072i023p05865.en_US
dc.identifier.citedreferenceFarrugia, C. J., H. K. Biernat, and N. V. Erkaev ( 1998 ), The effect of the magnetopause shapes of Jupiter and Saturn on magnetosheath parameters, Planet. Space Sci., 46, 507 – 514, doi: 10.1016/S0032‐0633(97)00225‐0.en_US
dc.identifier.citedreferenceGombosi, T. I., G. Tóth, D. L. De Zeeuw, K. C. Hansen, K. Kabin, and K. G. Powell ( 2002 ), Semi‐relativistic magnetohydrodynamics and physics based convergence acceleration, J. Comput. Phys., 177, 176 – 205, doi: 10.1006/jcph.2002.7009.en_US
dc.identifier.citedreferenceHendricks, S., F. M. Neubauer, M. K. Dougherty, N. Achilleos, and C. T. Russell ( 2005 ), Variability in Saturn's bow shock and magnetopause from Pioneer and Voyager: Probabilistic predictions and initial observations by Cassini, Geophys. Res. Lett., 32, L20S08, doi: 10.1029/2005GL022569.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.