Show simple item record

The ontogenetic origins of skull shape disparity in the Triturus cristatus group

dc.contributor.authorCvijanović, Milenaen_US
dc.contributor.authorIvanović, Anaen_US
dc.contributor.authorKalezić, Miloš L.en_US
dc.contributor.authorZelditch, Miriam L.en_US
dc.date.accessioned2014-09-03T16:52:22Z
dc.date.availableWITHHELD_13_MONTHSen_US
dc.date.available2014-09-03T16:52:22Z
dc.date.issued2014-09en_US
dc.identifier.citationCvijanović, Milena ; Ivanović, Ana ; Kalezić, Miloš L. ; Zelditch, Miriam L. (2014). "The ontogenetic origins of skull shape disparity in the Triturus cristatus group." Evolution & Development 16(5): 306-317.en_US
dc.identifier.issn1520-541Xen_US
dc.identifier.issn1525-142Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108377
dc.publisherSchwanzlurche IIB, Aula Verlagen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.titleThe ontogenetic origins of skull shape disparity in the Triturus cristatus groupen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108377/1/ede12093.pdf
dc.identifier.doi10.1111/ede.12093en_US
dc.identifier.sourceEvolution & Developmenten_US
dc.identifier.citedreferenceRohlf, F. J. 2005. tpsDig program, Version 2.04, Ecology and Evolution, SUNY at Stony Brook. http://life.bio.sunysb.edu/morph/.en_US
dc.identifier.citedreferenceRose, C. S. 2003. The developmental morphology of salamander skulls. In H. Heatwole and M. Davies (eds.). Amphibian Biology, Vol. 5: Osteology. Surrey Beatty and Sons Pty. Ltd., Australia, pp. 1686 – 1783.en_US
dc.identifier.citedreferenceSheets, H. D. 2003. IMP—Integrated Morphometrics Package. Department of Physics, Canisius College, Buffalo. http://www3.canisius.edu/∼sheets/morphsoft.html.en_US
dc.identifier.citedreferenceSheets, H. D. 2006. SpaceAngleThree6. Canisius College, Buffalo, NY.en_US
dc.identifier.citedreferenceSheets, H. D. 2010. VecCompare7. Canisius College, Buffalo, NY.en_US
dc.identifier.citedreferenceSheets, H. D., and Zelditch, M. L. 2013. Studying ontogenetic trajectories using resampling methods and landmark data. Hystrix 24: 67 – 74.en_US
dc.identifier.citedreferenceStrauss, R. E., and Altig, R. 1992. Ontogenetic body form changes in three ecological morphotypes of anuran tadpoles. Growth Dev. Aging 56: 3 – 16.en_US
dc.identifier.citedreferenceTrueb, L. 1993. Patterns of cranial diversity among the Lissamphibia. In J. Hanken and B. Hall (eds.). The Vertebrate Skull. University of Chicago Press, Chicago, pp. 255 – 343.en_US
dc.identifier.citedreferenceUrošević, A., Ljubisavljević, K., and Ivanović, A. 2013. Patterns of cranial ontogeny in lacertid lizards: morphological and allometric disparity. J. Evol. Biol. 26: 399 – 415.en_US
dc.identifier.citedreferenceValentine, J. W. 1995. Why no new phyla after the Cambrian? Genome and ecospace hypotheses revisited. Palaios 10: 190 – 194.en_US
dc.identifier.citedreferenceWalker, J. A. 1993. Ontogenetic allometry of threespine stickleback body form using landmark based morphometrics. In L. F. Marcus, E. Bello, and A. Garcia‐Valdecasas (eds.). Contributions to Morphometrics. Museo Nacional de Ciencias Naturales, Madrid, pp. 193 – 214.en_US
dc.identifier.citedreferenceWerner, E. E., and Gilliam, J. F. 1984. The ontogenetic niche and species interactions in size‐structured populations. Annu. Rev. Ecol. Syst. 15: 393 – 425.en_US
dc.identifier.citedreferenceWielstra, B., and Arntzen, J. W. 2011. Unraveling the rapid radiation of crested newts ( Triturus cristatus superspecies) using complete mitogenomic sequences. BMC Evol. Biol. 11: 162.en_US
dc.identifier.citedreferenceZelditch, M. L., Bookstein, F. L., and Lundrigan, B. L. 1992. Ontogeny of integrated skull growth in the cotton rat Sigmodon fulviventer. Evolution 46: 1164 – 1180.en_US
dc.identifier.citedreferenceZelditch, M. L., Sheets, D. H., and Fink, W. L. 2003a. The ontogenetic dynamics of shape disparity. Paleobiology 29: 139 – 156.en_US
dc.identifier.citedreferenceZelditch, M. L., Lundrigan, B. L., Sheets, D. H., and Garland, T. 2003b. Do precocial mammals develop at a faster rate? A comparison of rates of skull development in Sigmodon fulviventer and Mus musculus domesticus. J. Evol. Biol. 16: 708 – 720.en_US
dc.identifier.citedreferenceZelditch, M. L., Mezey, J., Sheets, D. H., Lundrigan, B. L., and Garland, T. Jr. 2006. Developmental regulation of skull morphology II: Ontogenetic dynamics of covariance. Evol. Dev. 8: 46 – 60.en_US
dc.identifier.citedreferenceZelditch, M. L., Swiderski, D. L., and Sheets, D. H. 2012. Geometric Morphometrics for Biologists: A Primer. 2nd Ed. Elsevier, San Diego, CA.en_US
dc.identifier.citedreferenceAdams, D. C., and Rohlf, F. J. 2000. Ecological character displacement in Plethodon: biomechanical differences found from a geometric morphometric study. PNAS 97: 4106 – 4111.en_US
dc.identifier.citedreferenceAdams, D. C., and Collyer, M. L. 2009. A general framework for the analysis of phenotypic trajectories in evolutionary studies. Evolution 63: 1143 – 1154.en_US
dc.identifier.citedreferenceAdams, D. C., and Nistri, A. 2010. Ontogenetic convergence and evolution of foot morphology in European cave salamanders (Family: Plethodontidae). BMC Evol. Biol. 10: 1 – 10.en_US
dc.identifier.citedreferenceAdams, D. C., and Otarola‐Castillo, E. 2013. Geomorph: an R package for the collection and analysis of geometric morphometric shape data. Meth. Ecol. Evol. 4: 393 – 399.en_US
dc.identifier.citedreferenceAnderson, M. J. 2001. A new method for non‐parametric multivariate analysis of variance. Austral Ecol. 26: 32 – 46.en_US
dc.identifier.citedreferenceAnderson, M. J., and ter Braak, C. J. F. 2003. Permutation tests for multi‐factorial analysis of variance. J. Stat. Comput. Simul. 73: 85 – 113.en_US
dc.identifier.citedreferenceArntzen, J. W. 2003. Triturus cristatus superspecies – Kammolch Artenkreiss, including T. cristatus (Laurenti, 1768)—Northern crested newt, T. carnifex (Laurenti, 1768)—Italian crested newt, T. dobrogicus (Kiritzescu, 1903)—Danube crested newt and T. karelinii (Strauch, 1870)—Southern crested newt. In K. Grossenbacher and B. Thiesmeier (eds.). Handbuch der Reptilien und Amphibien Europas. Schwanzlurche IIB, Aula Verlag, Wiesbaden, pp. 421 – 514.en_US
dc.identifier.citedreferenceBookstein, F. L. 1991. Morphometric Tools for Landmarks Data: Geometry and Biology. Cambridge University Press, Cambridge.en_US
dc.identifier.citedreferenceCiampaglio, C. N. 2002. Determining the role that ecological and developmental constraints play in controlling disparity: examples from the crinoid and blastozoan fossil record. Evol. Dev. 3: 1 – 17.en_US
dc.identifier.citedreferenceCiampaglio, C. N., Kemp, M., and McShea, D. W. 2001. Detecting changes in morphospace occupation patterns in the fossil record: characterization and analysis of measures of disparity. Paleobiology 27: 695 – 715.en_US
dc.identifier.citedreferenceClaessen, D., and Dieckmann, U. 2002. Ontogenetic niche shifts and evolutionary branching in size‐structured populations. Evol. Ecol. Res. 4: 189 – 217.en_US
dc.identifier.citedreferenceClaude, J. 2008. Morphometrics with R. Springer, New York.en_US
dc.identifier.citedreferenceCvijanović, M., Ivanović, A., TomaševićKolarov, N., Džukić, G., and Kalezić, M. L. 2009. Early ontogeny shows the same interspecific variation as natural history parameters in the crested newt ( Triturus cristatus superspecies) (Caudata, Salamandridae). Contrib. Zool. 78: 43 – 50.en_US
dc.identifier.citedreferenceDeban, S. M., and Wake, D. B. 2000. Aquatic feeding in salamanders. In K. Schwenk (ed.). Feeding: Form, Function and Evolution in Tetrapod Vertebrates. Academic Press, San Diego, pp. 65 – 94.en_US
dc.identifier.citedreferenceDingerkus, G., and Uhler, L. D. 1977. Enzyme clearing of alcian blue stained whole small vertebrates for demonstration of cartilage. Stain Technol. 52: 229 – 232.en_US
dc.identifier.citedreferenceDrake, A. G. 2011. Dispelling dog dogma: an investigation of heterochrony in dogs using 3D geometric morphometric analysis of skull shape. Evol. Dev. 13: 204 – 213.en_US
dc.identifier.citedreferenceDryden, I. L. 2013. Shapes: statistical shape analysis. R package version 1.1–8. http://CRAN.R‐project.org/package=shapes.en_US
dc.identifier.citedreferenceDryden, I. L., and Mardia, K. V. 1998. Statistical Shape Analysis. John Wiley and Sons, New York.en_US
dc.identifier.citedreferenceDuellman, W. E., and Trueb, L. 1994. Biology of Amphibians. Johns Hopkins University Press, Baltimore.en_US
dc.identifier.citedreferenceEble, G. J. 2000. Contrasting evolutionary flexibility in sister groups: disparity and diversity in Mesozoic atelostomate echinoids. Paleobiology 26: 56 – 79.en_US
dc.identifier.citedreferenceFisher‐Rousseau, L., Chu, K. P., and Cloutier, R. 2010. Developmental plasticity in fish exposed to a water velocity gradient: a complex response. J. Exp. Zool. (Mol. Dev. Evol.) 314B: 67 – 85.en_US
dc.identifier.citedreferenceFlury, B. 1987. Two generalizations of the common principal component model. Biometrika 74: 59 – 69.en_US
dc.identifier.citedreferenceFlury, B. 1988. Common Principal Components and Related Multivariate Models. Wiley, New York.en_US
dc.identifier.citedreferenceFoote, M. 1993a. Discordance and concordance between morphological and taxonomic diversity. Paleobiology 19: 185 – 204.en_US
dc.identifier.citedreferenceFoote, M. 1993b. Contributions of individual taxa to overall morphological disparity. Paleobiology 19: 403 – 419.en_US
dc.identifier.citedreferenceFoote, M. 1995. Morphological diversification of Paleozoic crinoids. Paleobiology 21: 273 – 299.en_US
dc.identifier.citedreferenceFoote, M. 1997. The evolution of morphological diversity. Annu. Rev. Ecol. Syst. 28: 129 – 152.en_US
dc.identifier.citedreferenceFrédérich, B., and Vandewalle, P. 2011. Bipartite life cycle of coral reef fishes promotes increasing shape disparity of the head skeleton during ontogeny: an example from damselfishes (Pomacentridae). BMC Evol. Biol. 11: 82.en_US
dc.identifier.citedreferenceGerber, S. 2011. Comparing the differential filling of morphospace and allometric space through time: the morphological and developmental dynamics of early Jurassic ammonoids. Paleobiology 37: 369 – 382.en_US
dc.identifier.citedreferenceGould, S. J. 1991. The disparity of the Burgess Shale arthropod fauna and the limits of cladistic analysis: why we must strive to quantify morphospace. Paleobiology 17: 411 – 423.en_US
dc.identifier.citedreferenceIordansky, N. 1996. Evolution of the musculature of the jaw apparatus in the Amphibia. Adv. Amphib. Res. Former Soviet Union 1: 3 – 26.en_US
dc.identifier.citedreferenceIvanović, A., and Kalezić, M. L. 2010. Testing the hypothesis of morphological integration on a skull of a vertebrate with a biphasic life cycle: a case study of the alpine newt. J. Exp. Zool. (Mol. Dev. Evol.) 314B: 527 – 538.en_US
dc.identifier.citedreferenceIvanović, A., Vukov, T. D., Džukić, G., Tomašević, N., and Kalezić, M. L. 2007. Ontogeny of skull size and shape changes within a framework of biphasic lifestyle: a case study in six Triturus species (Amphibia, Salamandridae). Zoomorphology 126: 173 – 183.en_US
dc.identifier.citedreferenceIvanović, A., Cvijanović, M., and Kalezić, M. L. 2011. Ontogeny of body form and metamorphosis: insights from the crested newts. J. Zool. 283: 153 – 161.en_US
dc.identifier.citedreferenceKlingenberg, C. P., Barluenga, M., and Meyer, A. 2002. Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry. Evolution 56: 1909 – 1920.en_US
dc.identifier.citedreferenceKrzanowski, W. J. 1979. Between‐groups comparisons of principal components. J. Am. Stat. Assoc. 74: 703–701, Correction (1981) 76: 1022.en_US
dc.identifier.citedreferenceKrzanowski, W. J. 1982. Between‐group comparison of principal components—some sampling results. J. Stat. Comp. Simul. 15: 141 – 154.en_US
dc.identifier.citedreferenceLa Croix, S., Holekamp, K. E., Shivik, J. A., Lundrigan, B. L., and Zelditch, M. L. 2011. Ontogenetic relationships between cranium and mandible in coyotes and hyenas. J. Morphol. 272: 662 – 674.en_US
dc.identifier.citedreferenceLebedkina, N. S. 2004. Evolution of the amphibian skull. In S. L. Kuzmin (ed.). Advances in Amphibian Research in the Former Soviet Union. Vol. 9. Pensoft Publishers, Sofia, pp. 1 – 239.en_US
dc.identifier.citedreferenceMarquez, E. 2008. Sage: Symmetry and asymmetry in geometric data (v. 1.05).en_US
dc.identifier.citedreferenceOksanen, J., et al. 2013. Vegan: Community Ecology Package. R package version 2.0–6. http://CRAN.R‐project.org/package=vegan.en_US
dc.identifier.citedreferencePiras, P., et al. 2011. The role of post‐natal ontogeny in the evolution of phenotypic diversity in Podarcis lizards. J. Evol. Biol. 24: 2705 – 2720.en_US
dc.identifier.citedreferencePonssa, M. L., and Candioti, M. F. L. 2012. Patterns of skull development in anurans: size and shape relationship during postmetamorphic cranial ontogeny in five species of the Leptodactylus fuscus Group (Anura: Leptodactylidae). Zoomorphology 131: 349 – 362.en_US
dc.identifier.citedreferenceRohlf, F. J., and Slice, D. E. 1990. Extensions of the procrustes method for the optimal superimpositionof landmarks. Syst. Zool. 39: 40 – 59.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.