Show simple item record

Multichannel Imaging to Quantify Four Classes of Pharmacokinetic Distribution in Tumors

dc.contributor.authorBhatnagar, Sumiten_US
dc.contributor.authorDeschenes, Emilyen_US
dc.contributor.authorLiao, Jianshanen_US
dc.contributor.authorCilliers, Corneliusen_US
dc.contributor.authorThurber, Greg M.en_US
dc.date.accessioned2014-10-07T16:09:12Z
dc.date.availableWITHHELD_13_MONTHSen_US
dc.date.available2014-10-07T16:09:12Z
dc.date.issued2014-10en_US
dc.identifier.citationBhatnagar, Sumit; Deschenes, Emily; Liao, Jianshan; Cilliers, Cornelius; Thurber, Greg M. (2014). "Multichannel Imaging to Quantify Four Classes of Pharmacokinetic Distribution in Tumors." Journal of Pharmaceutical Sciences 103(10): 3276-3286.en_US
dc.identifier.issn0022-3549en_US
dc.identifier.issn1520-6017en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108598
dc.publisherElsevieren_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherFluorescence Microscopyen_US
dc.subject.otherImaging Methodsen_US
dc.subject.otherDrug Transporten_US
dc.subject.otherPredictive Partial Differential Equation Simulationsen_US
dc.subject.otherIn Vivo/In Vitro Correlations (IVIVC)en_US
dc.subject.otherMathematical Modelen_US
dc.subject.otherKrogh Cylinderen_US
dc.titleMultichannel Imaging to Quantify Four Classes of Pharmacokinetic Distribution in Tumorsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPharmacy and Pharmacologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108598/1/jps24086.pdf
dc.identifier.doi10.1002/jps.24086en_US
dc.identifier.sourceJournal of Pharmaceutical Sciencesen_US
dc.identifier.citedreferenceRudnick SI, Lou JL, Shaller CC, Tang Y, Klein‐Szanto AJP, Weiner LM, Marks JD, Adams GP. 2011. Influence of affinity and antigen internalization on the uptake and penetration of anti‐ HER 2 antibodies in solid tumors. Cancer Res 71 ( 6 ): 2250 – 2259.en_US
dc.identifier.citedreferenceHeijn M, Roberge S, Jain RK. 1999. Cellular membrane permeability of anthracyclines does not correlate with their delivery in a tissue‐isolated tumor. Cancer Res 59 ( 17 ): 4458 – 4463.en_US
dc.identifier.citedreferenceVaupel P, Kallinowski F, Okunieff P. 1989. Blood‐flow, oxygen and nutrient supply, and metabolic microenvironment of human‐tumors—A review. Cancer Res 49 ( 23 ): 6449 – 6465.en_US
dc.identifier.citedreferenceBaxter L, Zhu H, Mackensen D, Jain RK. 1994. Physiologically based pharmacokinetic model for specific and nonspecific monoclonal antibodies and fragments in normal tissues and human tumor xenografts in nude mice. Cancer Res 54: 1517 – 1528.en_US
dc.identifier.citedreferenceSolomon B, Binns D, Roselt P, Weibe LI, McArthur GA, Cullinane C, Hicks RJ. 2005. Modulation of intratumoral hypoxia by the epidermal growth factor receptor inhibitor gefitinib detected using small animal PET imaging. Mol Cancer Ther 4 ( 9 ): 1417 – 1422.en_US
dc.identifier.citedreferenceMüller M, Keimling R, Lang S, Pauli J, Dahmen U, Dirsch O. 2009. Estimating blood flow velocity in liver vessels. In: Bildverarbeitung für die Medizin 2009; Meinzer H‐P, Deserno T, Handels H, Tolxdorff T, Eds. Berlin Heidelberg: Springer, pp 36 – 40.en_US
dc.identifier.citedreferenceSturesson C, Milstein DMJ, Post I, Maas AM, van Gulik TM. 2013. Laser speckle contrast imaging for assessment of liver microcirculation. Microvasc Res 87: 34 – 40.en_US
dc.identifier.citedreferenceJain RK. 1999. Transport of molecules, particles, and cells in solid tumors. Annu Rev Biomed Eng 01: 241 – 263.en_US
dc.identifier.citedreferenceBaker J, Lindquist K, Huxham L, Kyle A, Sy J, Minchinton A. 2008. Direct visualization of heterogeneous extravascular distribution of trastuzumab in human epidermal growth factor receptor type 2 overexpressing xenografts. Clin Cancer Res 14 ( 7 ): 2171 – 2179.en_US
dc.identifier.citedreferenceSteffen AC, Orlova A, Wikman M, Nilsson FY, Stahl S, Adams GP, Tolmachev V, Carlsson J. 2006. Affibody‐mediated tumour targeting of HER ‐2 expressing xenografts in mice. Eur J Nucl Med Mol Imaging 33 ( 6 ): 631 – 638.en_US
dc.identifier.citedreferenceDevaraj NK, Thurber GM, Keliher EJ, Marinelli B, Weissleder R. 2012. Reactive polymer enables efficient in vivo bioorthogonal chemistry. Proc Natl Acad Sci USA 109 ( 13 ): 4762 – 4767.en_US
dc.identifier.citedreferenceKeliher EJ, Reiner T, Thurber GM, Upadhyay R, Weissleder R. 2012. Efficient 18F‐labeling of synthetic exendin‐4 analogues for imaging beta cells. Chem Open 1 (4): 177 – 183.en_US
dc.identifier.citedreferenceBaish JW, Netti PA, Jain RK. 1997. Transmural coupling of fluid flow in microcirculatory network and interstitium in tumors. Microvasc Res 53 ( 2 ): 128 – 141.en_US
dc.identifier.citedreferenceTrotter MJ, Olive PL, Chaplin DJ. 1990. Effect of vascular marker Hoechst‐33342 on tumor perfusion and cardiovascular function in the mouse. 62 ( 6 ): 903 – 908.en_US
dc.identifier.citedreferenceThurber G. 2011. Kinetics of antibody penetration into tumors. In: Targeted radionuclide therapy; Speer TW, Ed. Philadelphia: Lippincott Williams and Wilkins, pp 168 – 181.en_US
dc.identifier.citedreferencevan Osdol W, Fujimori K, Weinstein J. 1991. An analysis of monoclonal antibody distribution in microscopic tumor nodules: Consequences of a “Binding Site Barrier ”. Cancer Res 51: 4776 – 4784.en_US
dc.identifier.citedreferenceThurber G, Schmidt M, Wittrup KD. 2008. Factors determining antibody distribution in tumors. Trends Pharmacol Sci 29 ( 2 ): 57 – 61.en_US
dc.identifier.citedreferenceHuang S, Endo RI, Nemerow GR. 1995. Upregulation of integrins alpha v beta 3 and alpha v beta 5 on human monocytes and T lymphocytes facilitates adenovirus‐mediated gene delivery. J Virol 69 ( 4 ): 2257 – 2263.en_US
dc.identifier.citedreferencePerrault SD, Walkey C, Jennings T, Fischer HC, Chan WCW. 2009. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett 9 ( 5 ): 1909 – 1915.en_US
dc.identifier.citedreferenceYang Z, Leon J, Martin M, Harder JW, Zhang R, Liang D, Lu W, Tian M, Gelovani JG, Qiao A, Li C. 2009. Pharmacokinetics and biodistribution of near‐infrared fluorescence polymeric nanoparticles. Nanotechnology 20 ( 16 ): 11.en_US
dc.identifier.citedreferenceChoi HS, Ipe BI, Misra P, Lee JH, Bawendi MG, Frangioni JV. 2009. Tissue‐ and organ‐selective biodistribution of NIR fluorescent quantum dots. Nano Lett 9 ( 6 ): 2354 – 2359.en_US
dc.identifier.citedreferenceNahrendorf M, Waterman P, Thurber G, Groves K, Rajopadhye M, Panizzi P, Marinelli B, Aikawa E, Pittet MJ, Swirski FK, Weissleder R. 2009. Hybrid in vivo FMT‐CT imaging of protease activity in atherosclerosis with customized nanosensors. Arterioscler Thromb Vasc Biol 29 ( 10 ): 1444 – U1489.en_US
dc.identifier.citedreferenceBlumenthal RD, Fand I, Sharkey RM, Boerman OC, Kashi R, Goldenberg DM. 1991. The effect of antibody protein dose on the uniformity of tumor distribution of radioantibodies—An autoradiographic study. Cancer Immunol Immunother 33 ( 6 ): 351 – 358.en_US
dc.identifier.citedreferenceThurber GM, Wittrup KD. 2012. A mechanistic compartmental model for total antibody uptake in tumors. J Theor Biol 314: 57 – 68.en_US
dc.identifier.citedreferenceJain RK. 2005. Normalization of tumor vasculature: An emerging concept in antiangiogenic therapy. Science 307 ( 5706 ): 58 – 62.en_US
dc.identifier.citedreferenceGoel S, Duda DG, Xu L, Munn LL, Boucher Y, Fukumura D, Jain RK. 2011. Normalization of the vasculature for treatment of cancer and other diseases. Physiol Rev 91 ( 3 ): 1071 – 1121.en_US
dc.identifier.citedreferenceSecomb TW, Hsu R, Park EYH, Dewhirst MW. 2004. Green's function methods for analysis of oxygen delivery to tissue by microvascular networks. Ann Biomed Eng 32 ( 11 ): 1519 – 1529.en_US
dc.identifier.citedreferenceHelmlinger G, Sckell A, Dellian M, Forbes N, Jain RK. 2002. Acid production in glycolysis‐impaired tumors provides new insights into tumor metabolism. Clin Cancer Res 8: 1284 – 1291.en_US
dc.identifier.citedreferenceJain RK. 1999. Transport of molecules, particles, and cells in solid tumors. Annu Rev Biomed Eng 1: 241 – 263.en_US
dc.identifier.citedreferenceMinchinton AI, Tannock IF. 2006. Drug penetration in solid tumours. Nat Rev Cancer 6 ( 8 ): 583 – 592.en_US
dc.identifier.citedreferenceOhtani H. 1998. Stromal reaction in cancer tissue: Pathophysiologic significance of the expression of matrix‐degrading enzymes in relation to matrix turnover and immune/inflammatory reactions. Pathol Int 48 ( 1 ): 1 – 9.en_US
dc.identifier.citedreferenceGrantab R, Sivananthan S, Tannock IF. 2006. The penetration of anticancer drugs through tumor tissue as a function of cellular adhesion and packing density of tumor cells. Cancer Res 66 ( 2 ): 1033 – 1039.en_US
dc.identifier.citedreferenceBaxter LT, Jain RK. 1989. Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. Microvasc Res 37 ( 1 ): 77 – 104.en_US
dc.identifier.citedreferenceKarnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, Richardson AL, Polyak K, Tubo R, Weinberg RA. 2007. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449 ( 7162 ): 557 – U554.en_US
dc.identifier.citedreferenceJain RK, Ward‐Hartley K. 1984. Tumor blood flow‐characterization, modifications, and role in hyperthermia. IEEE Trans Sonics Ultrasonics 31 ( 5 ): 504 – 525.en_US
dc.identifier.citedreferenceDreher MR, Liu W, Michelich CR, Dewhirst MW, Yuan F, Chilkoti A. 2006. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst 98 ( 5 ): 335 – 344.en_US
dc.identifier.citedreferenceKovtun YV, Audette CA, Ye Y, Xie H, Ruberti MF, Phinney SJ, Leece BA, Chittenden T, Blättler WA, Goldmacher VS. 2006. Antibody–drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Cancer Res 66 ( 6 ): 3214 – 3221.en_US
dc.identifier.citedreferenceRosania GR, Lee JW, Ding L, Yoon HS, Chang YT. 2003. Combinatorial approach to organelle‐targeted fluorescent library based on the styryl scaffold. J Am Chem Soc 125 ( 5 ): 1130 – 1131.en_US
dc.identifier.citedreferenceDreher MR, Liu WG, Michelich CR, Dewhirst MW, Yuan F, Chilkoti A. 2006. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst 98 ( 5 ): 335 – 344.en_US
dc.identifier.citedreferenceGerlowski L, Jain RK. 1986. Microvascular permeability of normal and neoplastic tissues. Microvasc Res 31: 288 – 305.en_US
dc.identifier.citedreferenceChampion JA, Mitragotri S. 2006. Role of target geometry in phagocytosis. Proc Natl Acad Sci USA 103 ( 13 ): 4930 – 4934.en_US
dc.identifier.citedreferenceHarris TJ, Green JJ, Fung PW, Langer R, Anderson DG, Bhatia SN. 2010. Tissue‐specific gene delivery via nanoparticle coating. Biomaterials 31 ( 5 ): 998 – 1006.en_US
dc.identifier.citedreferenceChoi HS, Liu W, Liu F, Nasr K, Misra P, Bawendi MG, Frangioni JV. 2010. Design considerations for tumour‐targeted nanoparticles. Nat Nanotechnol 5 ( 1 ): 42 – 47.en_US
dc.identifier.citedreferenceHamblett KJ, Senter PD, Chace DF, Sun MM, Lenox J, Cerveny CG, Kissler KM, Bernhardt SX, Kopcha AK, Zabinski RF, Meyer DL, Francisco JA. 2004. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res 10 ( 20 ): 7063 – 7070.en_US
dc.identifier.citedreferenceZhang X, Shedden K, Rosania GR. 2006. A cell‐based molecular transport simulator for pharmacokinetic prediction and cheminformatic exploration. Mol Pharm 3 ( 6 ): 704 – 716.en_US
dc.identifier.citedreferenceRhoden JJ, Wittrup KD. 2012. Dose dependence of intratumoral perivascular distribution of monoclonal antibodies. J Pharm Sci 101 ( 2 ): 860 – 867.en_US
dc.identifier.citedreferenceWeissleder R, Tung CH, Mahmood U, Bogdanov A. 1999. In vivo imaging of tumors with protease‐activated near‐infrared fluorescent probes. Nat Biotechnol 17 ( 4 ): 375 – 378.en_US
dc.identifier.citedreferenceSu H, Seimbille Y, Ferl GZ, Bodenstein C, Fueger B, Kim KJ, Hsu YT, Dubinett SM, Phelps ME, Czernin J, Weber WA. 2008. Evaluation of [F‐18]gefitinib as a molecular imaging probe for the assessment of the epidermal growth factor receptor status in malignant tumors. Eur J Nucl Med Mol Imaging 35 ( 6 ): 1089 – 1099.en_US
dc.identifier.citedreferenceThurber GM, Weissleder R. 2011. Quantitating antibody uptake in vivo: Conditional dependence on antigen expression levels. Mol Imaging Biol 13 ( 4 ): 623 – 632.en_US
dc.identifier.citedreferenceCai WB, Chen K, He LN, Cao QH, Koong A, Chen XY. 2007. Quantitative PET of EGFR expression in xenograft‐bearing mice using C u‐64‐labeled cetuximab, a chimeric anti‐ EGFR monoclonal antibody. Eur J Nucl Med Mol Imaging 34 ( 6 ): 850 – 858.en_US
dc.identifier.citedreferenceMcLarty K, Cornelissen B, Scollard DA, Done SJ, Chun K, Reilly RM. 2009. Associations between the uptake of In‐111‐ DTPA ‐trastuzumab, HER 2 density and response to trastuzumab (Herceptin) in athymic mice bearing subcutaneous human tumour xenografts. Eur J Nucl Med Mol Imaging 36 ( 1 ): 81 – 93.en_US
dc.identifier.citedreferenceAerts H, Dubois L, Perk L, Vermaelen P, van Dongen G, Wouters BG, Lambin P. 2009. Disparity between in vivo EGFR expression and Zr‐89‐labeled cetuximab uptake assessed with PET. J Nucl Med 50 ( 1 ): 123 – 131.en_US
dc.identifier.citedreferenceMilenic DE, Wong KJ, Baidoo KE, Ray GL, Garmestani K, Williams M, Brechbiel MW. 2008. Cetuximab: Preclinical evaluation of a monoclonal antibody targeting EGFR for radioimmunodiagnostic and radioimmunotherapeutic applications. Cancer Biother Radiopharm 23 ( 5 ): 619 – 631.en_US
dc.identifier.citedreferenceMullani NA, Herbst RS, O'Neil RG, Gould KL, Barron BJ, Abbruzzese JL. 2008. Tumor blood flow measured by PET dynamic imaging of first‐pass F ‐18‐ FDG uptake: A comparison with O‐15‐labeled water‐measured blood flow. J Nucl Med 49 ( 4 ): 517 – 523.en_US
dc.identifier.citedreferencePatlak CS, Blasberg RG, Fenstermacher JD. 1983. Graphical evaluation of blood‐to‐brain transfer constants from multiple‐time uptake data. J Cereb Blood Flow Metab 3 ( 1 ): 1 – 7.en_US
dc.identifier.citedreferenceThurber GM, Yang KS, Reiner T, Kohler RH, Sorger P, Mitchison T, Weissleder R. 2013. Single‐cell and subcellular pharmacokinetic imaging allows insight into drug action in vivo. Nat Commun 4: 1504.en_US
dc.identifier.citedreferenceVenkatasubramanian R, Arenas RB, Henson MA, Forbes NS. 2010. Mechanistic modelling of dynamic MRI data predicts that tumour heterogeneity decreases therapeutic response. Br J Cancer 103 ( 4 ): 486 – 497.en_US
dc.identifier.citedreferenceHauert S, Berman S, Nagpal R, Bhatia SN. 2013. A computational framework for identifying design guidelines to increase the penetration of targeted nanoparticles into tumors. Nano Today 8 ( 6 ): 566 – 576.en_US
dc.identifier.citedreferenceWittrup KD, Thurber GM, Schmidt MM, Rhoden JJ. 2012. Practical theoretic guidance for the design of tumor‐targeting agents. In: Methods in enzymology: Protein engineering for therapeutics; Wittrup KD, Verdine GL, Eds. Vol. 503. pp 255 – 268. Elsevier, Waltham, MA en_US
dc.identifier.citedreferencePoulin P, Theil FP. 2002. Prediction of pharmacokinetics prior to in vivo studies. II. Generic physiologically based pharmacokinetic models of drug disposition. J Pharm Sci 91 ( 5 ): 1358 – 1370.en_US
dc.identifier.citedreferencePeters SA. 2008. Evaluation of a generic physiologically based pharmacokinetic model for lineshape analysis. Clin Pharmacokinet 47 ( 4 ): 261 – 275.en_US
dc.identifier.citedreferenceRowland M, Peck C, Tucker G. 2011. Physiologically‐based pharmacokinetics in drug development and regulatory science. In: Annual review of pharmacology and toxicology; Cho AK, Ed. Vol. 51. Palo Alto: Annual Reviews, pp 45 – 73.en_US
dc.identifier.citedreferenceRodgers T, Rowland M. 2007. Mechanistic approaches to volume of distribution predictions: Understanding the processes. Pharm Res 24 ( 5 ): 918 – 933.en_US
dc.identifier.citedreferenceFerl GZ, Wu AM, DiStefano JJ. 2005. A predictive model of therapeutic monoclonal antibody dynamics and regulation by the neonatal fc receptor (FcRn). Ann Biomed Eng 33 ( 11 ): 1640 – 1652.en_US
dc.identifier.citedreferenceGarg A, Balthasar JP. 2007. Physiologically‐based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild‐type and FcRn‐knockout mice. J Pharmacokinet Pharmacodyn 34 ( 5 ): 687 – 709.en_US
dc.identifier.citedreferenceMager DE. 2006. Quantitative structure‐pharmacokinetic/pharmacodynamic relationships. Adv Drug Deliv Rev 58 ( 12–13 ): 1326 – 1356.en_US
dc.identifier.citedreferenceThurber GM, Weissleder R. 2011. A systems approach for tumor pharmacokinetics. PLoS One 6 ( 9 ).en_US
dc.identifier.citedreferenceGraham J, Muhsin M, Kirkpatrick P. 2004. Cetuximab. Nat Rev Drug Discov 3 ( 7 ): 549 – 550.en_US
dc.identifier.citedreferenceAstsaturov I, Cohen RB, Harari PM. 2006. EGFR‐targeting monoclonal antibodies in head and neck cancer. Curr Cancer Drug Targets 6 ( 8 ): 691 – 710.en_US
dc.identifier.citedreferenceThurber GM, Schmidt MM, Wittrup KD. 2008. Antibody tumor penetration: Transport opposed by systemic and antigen‐mediated clearance. Adv Drug Deliv Rev 60 ( 12 ): 1421 – 1434.en_US
dc.identifier.citedreferenceLammler G, Herzog H, Saupe E, Schutze HR. 1971. Chemotherapeutic studies on Litomosoides carinii infection of Mastomys natalensis. 1. The filaricidal action of 2,6‐bis‐benzimidazoles. Bull World Health Organ 44 ( 6 ): 751 – 756.en_US
dc.identifier.citedreferenceChaplin DJ, Olive PL, Durand RE. 1987. Intermittent blood‐flow in a murine tumor—Radiobiological effects. Cancer Res 47 ( 2 ): 597 – 601.en_US
dc.identifier.citedreferenceTrotter MJ, Chaplin DJ, Olive PL. 1989. Use of a carbocyanine dye as a marker of functional vasculature in murine tumors. Br J Cancer 59 ( 5 ): 706 – 709.en_US
dc.identifier.citedreferenceColeman PJ, Brashear KM, Askew BC, Hutchinson JH, McVean CA, Duong LT, Feuston BP, Fernandez‐Metzler C, Gentile MA, Hartman GD, Kimmel DB, Leu CT, Lipfert L, Merkle K, Pennypacker B, Prueksaritanont T, Rodan GA, Wesolowski GA, Rodan SB, Duggan ME. 2004. Nonpeptide alpha(v)beta(3) antagonists. Part 11: Discovery and preclinical evaluation of potent alpha v beta(3) antagonists for the prevention and treatment of osteoporosis. J Med Chem 47 ( 20 ): 4829 – 4837.en_US
dc.identifier.citedreferenceKossodo S, Pickarski M, Lin S‐A, Gleason A, Gaspar R, Buono C, Ho G, Blusztajn A, Cuneo G, Zhang J, Jensen J, Hargreaves R, Coleman P, Hartman G, Rajopadhye M, Duong LT, Sur C, Yared W, Peterson J, Bednar B. 2009. Dual in vivo quantification of integrin‐targeted and protease‐activated agents in cancer using fluorescence molecular tomography ( FMT ). Mol Imaging Biol 12 ( 5 ): 488 – 499.en_US
dc.identifier.citedreferenceFerl GZ, Dumont RA, Hildebrandt IJ, Armijo A, Haubner R, Reischl G, Su H, Weber WA, Huang SC. 2009. Derivation of a compartmental model for quantifying Cu‐64‐ DOTA ‐ RGD kinetics in tumor‐bearing mice. J Nucl Med 50 ( 2 ): 250 – 258.en_US
dc.identifier.citedreferenceLalande ME, Ling V, Miller RG. 1981. Hoechst 33342 dye uptake as a probe of membrane permeability changes in mammalian cells. Proc Natl Acad Sci USA 78 ( 1 ): 363 – 367.en_US
dc.identifier.citedreferenceGrandjean TR, Chappell MJ, Yates JT, Jones K, Wood G, Coleman T. 2011. Compartmental modelling of the pharmacokinetics of a breast cancer resistance protein. Comput Methods Programs Biomed 104 ( 2 ): 81 – 92.en_US
dc.identifier.citedreferenceBolte S, Cordelieres FP. 2006. A guided tour into subcellular colocalization analysis in light microscopy. J Micrsocopy 224: 213 – 232.en_US
dc.identifier.citedreferenceSmith KA, Hill SA, Begg AC, Denekamp J. 1988. Validation of the Fluorescent Dye Hoechst 33342 as a vascular space marker in tumors. Br J Cancer 57 ( 3 ): 247 – 253.en_US
dc.identifier.citedreferenceThurber GM, Zajic SC, Wittrup KD. 2007. Theoretic criteria for antibody penetration into solid tumors and micrometastases. J Nucl Med 48 ( 6 ): 995 – 999.en_US
dc.identifier.citedreferenceOliveira S, Cohen R, Walsum MS, van Dongen GA, Elias SG, van Diest PJ, Mali W, van Bergen En, Henegouwen PM. 2012. A novel method to quantify IRDye800CW fluorescent antibody probes ex vivo in tissue distribution studies. EJNMMI Res 2 ( 1 ): 50.en_US
dc.identifier.citedreferenceBalaz S. 2009. Modeling kinetics of subcellular disposition of chemicals. Chem Rev 109: 1793 – 1899.en_US
dc.identifier.citedreferenceArndt‐Jovin DJ, Jovin TM. 1977. Analysis and sorting of living cells according to deoxyribonucleic acid content. J Histochem Cytochem 25 ( 7 ): 585 – 589.en_US
dc.identifier.citedreferenceThurber GM, Figueiredo JL, Weissleder R. 2009. Multicolor fluorescent intravital live microscopy (FILM) for surgical tumor resection in a mouse xenograft model. PLoS ONE 4 ( 11 ): e8053.en_US
dc.identifier.citedreferencePoulin P, Theil FP. 2000. A Priori prediction of tissue: Plasma partition coefficients of drugs to facilitate the use of physiologically‐based pharmacokinetic models in drug discovery. J Pharm Sci 89 ( 1 ): 16 – 35.en_US
dc.identifier.citedreferenceBoucher Y, Baxter LT, Jain RK. 1990. Interstitial pressure‐gradients in tissue‐isolated and subcutaneous tumors—Implications for therapy. Cancer Res 50 ( 15 ): 4478 – 4484.en_US
dc.identifier.citedreferenceJain RK, Baxter L. 1988. Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: Significance of elevated interstitial pressure. Cancer Res 48: 7022 – 7032.en_US
dc.identifier.citedreferenceSwartz MA. 2001. The physiology of the lymphatic system. Adv Drug Deliv Rev 50 ( 1–2 ): 3 – 20.en_US
dc.identifier.citedreferenceThurber GM, Wittrup KD. 2008. Quantitative spatiotemporal analysis of antibody fragment diffusion and endocytic consumption in tumor spheroids. Cancer Res 68: 3334 – 3341.en_US
dc.identifier.citedreferenceAdams G, Schier R, McCall A, Simmons H, Horak E, Alpaugh K, Marks J, Weiner L. 2001. High affinity restricts the localization and tumor penetration of single‐chain Fv antibody molecules. Cancer Res 61: 4750 – 4755.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.