Show simple item record

Microradiography and microcomputed tomography comparative analysis in human bone cores harvested after maxillary sinus augmentation: a pilot study

dc.contributor.authorSoardi, Carlo Mariaen_US
dc.contributor.authorClozza, Emanueleen_US
dc.contributor.authorTurco, Gianlucaen_US
dc.contributor.authorBiasotto, Matteoen_US
dc.contributor.authorEngebretson, Steven P.en_US
dc.contributor.authorWang, Hom‐layen_US
dc.contributor.authorZaffe, Davideen_US
dc.date.accessioned2014-10-07T16:09:22Z
dc.date.availableWITHHELD_13_MONTHSen_US
dc.date.available2014-10-07T16:09:22Z
dc.date.issued2014-10en_US
dc.identifier.citationSoardi, Carlo Maria; Clozza, Emanuele; Turco, Gianluca; Biasotto, Matteo; Engebretson, Steven P.; Wang, Hom‐lay ; Zaffe, Davide (2014). "Microradiography and microcomputed tomography comparative analysis in human bone cores harvested after maxillary sinus augmentation: a pilot study." Clinical Oral Implants Research 25(10): 1161-1168.en_US
dc.identifier.issn0905-7161en_US
dc.identifier.issn1600-0501en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108620
dc.description.abstractObjectives The aim of this study was to compare microradiography ( MR ) and microcomputed tomography (μ CT ) analysis of bone samples following maxillary sinus augmentation at different time periods and determine the relationships between measured area and volume fractions. Materials and methods Lateral window sinus grafts were performed on 10 patients using a mineralized human bone allograft ( MHBA ). At implant placement, 5–13 months after surgery, 10 bone core biopsies were harvested. Prior to histologic sectioning, bone samples were evaluated with μ CT . The morphometric parameters computed by MR and μ CT were compared using Pearson's correlation and Bland and Altman analysis and included hard tissue fraction ( HV / TV :%), soft tissue fraction ( SV / TV :%), vital bone fraction ( BV / TV :%) and residual graft fraction ( GV / TV :%). Results Strong positive correlation between MR and μ CT was found for HV / TV and SV / TV and BV / TV [ r  = 0.84, 0.84 and 0.69, respectively] but weak for GV / TV [ r  = 0.10]. Conclusion μ CT technology shows promising potential as an indicator of bone morphology changes; however, caution should be used in interpreting morphometric parameters, as the different methods reveal important biases.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherBone Formationen_US
dc.subject.otherBone Graften_US
dc.subject.otherBone Histomorphometryen_US
dc.subject.otherMicrocomputed Tomographyen_US
dc.subject.otherMicroradiographyen_US
dc.titleMicroradiography and microcomputed tomography comparative analysis in human bone cores harvested after maxillary sinus augmentation: a pilot studyen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelDentistryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108620/1/clr12225.pdf
dc.identifier.doi10.1111/clr.12225en_US
dc.identifier.sourceClinical Oral Implants Researchen_US
dc.identifier.citedreferenceLiu, S., Broucek, J., Virdi, A.S. & Sumner, D.R. ( 2011 ) Limitations of using micro‐computed tomography to predict bone‐implant contact and mechanical fixation. Journal of Microscopy 245: 34 – 42.en_US
dc.identifier.citedreferenceGonzález‐García, R. & Monje, F. ( 2012b ) Is micro‐computed tomography reliable to determine the microstructure of the maxillary alveolar bone? Clinical Oral Implants Research 2012: doi: 10.1111/j.1600‐0501.2012.02478.x.en_US
dc.identifier.citedreferenceHedberg, E.L., Kroese‐Deutman, H.C., Shih, C.K., Lemoine, J.J., Liebschner, M.A., Miller, M.J., Yasko, A.W., Crowther, R.S., Carney, D.H., Mikos, A.G. & Jansen, J.A. ( 2005 ) Methods: a comparative analysis of radiography, microcomputed tomography, and histology for bone tissue engineering. Tissue Engineering 11: 1356 – 1367.en_US
dc.identifier.citedreferenceHuang, H.‐L., Chen, M.Y., Hsu, J.‐T., Li, Y.‐F., Chang, C.‐H. & Chen, K.‐T. ( 2011 ) Three‐dimensional bone structure and bone mineral density evaluations of autogenous bone graft after sinus augmentation: a microcomputed tomography analysis. Clinical Oral Implants Research 23: 1098 – 1103.en_US
dc.identifier.citedreferenceIto, M., Nakamura, T., Matsumoto, T., Tsurusaki, K. & Hayashi, K. ( 1998 ) Analysis of trabecular microarchitecture of human iliac bone using microcomputed tomography in patients with hip arthrosis with or without vertebral fracture. Bone 23: 163 – 169.en_US
dc.identifier.citedreferenceJosselin, De, de Jong, J.E., ten Bosch, J.J. & Noordmans, J. ( 1997 ) Optimised microcomputer‐guided quantitative microradiography on dental mineralised tissue slices. Physics in Medicine & Biology 32: 887 – 899.en_US
dc.identifier.citedreferenceKühl, S., Brochhausen, C., Götz, H., Filippi, A., Payer, M., d'Hoedt, B. & Kreisler, M. ( 2013 ) The influence of bone substitute materials on the bone volume after maxillary sinus augmentation: a microcomputerized tomography study. Clinical Oral Investigations 17: 543 – 551.en_US
dc.identifier.citedreferenceKühl, S., Götz, H., Hansen, T., Kreisler, M., Behneke, A., Heil, U., Duschner, H. & d'Hoedt, B. ( 2010 ) Three‐dimensional analysis of bone formation after maxillary sinus augmentation by means of microcomputed tomography: a pilot study. The International Journal of Oral Maxillofacial Implants 25: 930 – 938.en_US
dc.identifier.citedreferenceLaib, A. & Ruegsegger, P. ( 1999 ) Calibration of trabecular bone structure measurements of in vivo three‐dimensional peripheral quantitative computed tomography with 28‐micron‐resolution microcomputed tomography. Bone 24: 35 – 39.en_US
dc.identifier.citedreferenceMüller, R., Van Campenhout, H., Van Damme, B., Van Der Perre, G., Dequeker, J., Hildebrand, T. & Rüegsegger, P. ( 1998 ) Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro‐computed tomography. Bone 23: 59 – 66.en_US
dc.identifier.citedreferenceParfitt, A.M., Drezner, M.K., Glorieux, F.H., Kanis, J.A., Malluche, H., Meunier, P.J., Ott, S.M. & Recker, R.R. ( 1987 ) Bone histomorphometry: standardization of nomenclature, symbols, and units. report of the ASBMR histomorphometry nomenclature committee. Journal of Bone Mineral Research 2: 595 – 610.en_US
dc.identifier.citedreferencePark, Y.‐S., Yi, K.‐Y., Lee, I.‐S. & Jung, Y.‐C. ( 2005 ) Correlation between microtomography and histomorphometry for assessment of implant osseointegration. Clinical Oral Implants Research 16: 156 – 160.en_US
dc.identifier.citedreferencePuri, K., Suresh, K., Gogtay, N. & Thatte, U. ( 2009 ) Declaration of Helsinki, 2008: implications for stakeholders in research. Journal of Postgraduate Medicine 55: 131 – 134.en_US
dc.identifier.citedreferenceScherf, H. & Tilgner, R. ( 2009 ) A new high‐resolution computed tomography (CT) segmentation method for trabecular bone architectural analysis. American Journal of Physical Anthropology 140: 39 – 51.en_US
dc.identifier.citedreferenceSchmitt, C.M., Doering, H., Schmidt, T., Lutz, R., Neukam, F.W. & Schlegel, K.A. ( 2013 ) Histological results after maxillary sinus augmentation with Straumann ® BoneCeramic, Bio‐Oss ®, Puros ®, and autologous bone. A randomized controlled clinical trial. Clinical Oral Implants Research; 24: 576 – 585.en_US
dc.identifier.citedreferenceSchortinghuis, J., Ruben, J.L., Meijer, H.J., Bronckers, A.L., Raghoebar, G.M. & Stegenga, B. ( 2003 ) Microradiography to evaluate bone growth into a rat mandibular defect. Archives of Oral Biology 48: 155 – 160.en_US
dc.identifier.citedreferenceSoardi, C.M., Spinato, S., Zaffe, D. & Wang, H.‐L. ( 2011 ) Atrophic maxillary floor augmentation by mineralized human bone allograft in sinuses of different size: an histologic and histomorphometric analysis. Clinical Oral Implants Research 22: 560 – 566.en_US
dc.identifier.citedreferenceSoardi, C.M., Zaffe, D., Motroni, A. & Wang, H‐L. ( 2012 ) Quantitative comparison of cone beam computed tomography and microradiography in the evaluation of bone density after maxillary sinus augmentation: a preliminary study. Clinical Implant Dentistry and Related Research doi: 10.1111/cid 12016 [Epub ahead of print].en_US
dc.identifier.citedreferenceStiller, M., Rack, A., Zabler, S., Goebbels, J., Dalügge, O., Jonscher, S. & Knabe, C. ( 2009 ) Quantification of bone tissue regeneration employing β‐tricalcium phosphate by three‐dimensional non‐invasive synchrotron micro‐tomography — A comparative examination with histomorphometry. Bone 44: 619 – 628.en_US
dc.identifier.citedreferenceTamminen, I.S., Isaksson, H., Aula, A.S., Honkanen, E., Jurvelin, J.S. & Kröger, H. ( 2010 ) Reproducibility and agreement of micro‐CT and histomorphometry in human trabecular bone with different metabolic status. Journal of Bone and Mineral Metabolism 29: 442 – 448.en_US
dc.identifier.citedreferenceThomsen, J.S., Laib, A., Koller, B., Prohaska, S., Mosekilde, L. & Gowin, W. ( 2005 ) Stereological measures of trabecular bone structure: comparison of 3D micro computed tomography with 2D histological sections in human proximal tibial bone biopsies. Journal of Microscopy 218: 171 – 179.en_US
dc.identifier.citedreferenceTrisi, P., Rebaudi, A., Calvari, F. & Lazzara, R.J. ( 2006 ) Sinus graft with biogran, autogenous bone, and PRP: a report of three cases with histology and micro‐CT. The International Journal of Periodontics and Restorative Dentistry 26: 113 – 125.en_US
dc.identifier.citedreferenceUchiyama, T., Tanizawa, T., Muramatsu, H., Endo, N., Takahashi, H.E. & Hara, T. ( 1997 ) A morphometric comparison of trabecular structure of human ilium between microcomputed tomography and conventional histomorphometry. Calcified Tissue International 61: 493 – 498.en_US
dc.identifier.citedreferenceWallace, S.S. & Froum, S.J. ( 2003 ) Effect of maxillary sinus augmentation on the survival of endosseous dental implants. A systematic review. Annals of Periodontology 8: 328 – 343.en_US
dc.identifier.citedreferenceYeom, H., Blanchard, S., Kim, S., Zunt, S. & Chu, T.‐M.G. ( 2008 ) Correlation between micro‐computed tomography and histomorphometry for assessment of new bone formation in a calvarial experimental model. The Journal of Craniofacial Surgery 19: 446 – 452.en_US
dc.identifier.citedreferenceAghaloo, T.L. & Moy, P.K. ( 2007 ) Which hard tissue augmentation techniques are the most successful in furnishing bony support for implant placement? The International Journal of Oral Maxillofacial Implants 22 Suppl: 49 – 70.en_US
dc.identifier.citedreferenceBanse, X., Devogelaer, J.P. & Grynpas, M. ( 2002 ) Patient‐specific microarchitecture of vertebral cancellous bone: a peripheral quantitative computed tomographic and histological study. Bone 30: 829 – 835.en_US
dc.identifier.citedreferenceBernhardt, R., Kuhlisch, E., Schulz, M.C., Eckelt, U. & Stadlinger, B. ( 2012 ) Comparison of bone‐implant contact and bone‐implant volume between 2D‐histological sections and 3D‐SRμCT slices. European Cells & Materials 23: 237 – 248.en_US
dc.identifier.citedreferenceBertoldi, C., Zaffe, D. & Consolo, U. ( 2008 ) Polylactide/polyglycolide copolymer in bone defect healing in humans. Biomaterials 29: 1817 – 1823.en_US
dc.identifier.citedreferenceBland, J.M. & Altman, D.G. ( 1986 ) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1: 307 – 310.en_US
dc.identifier.citedreferenceBonnet, N., Laroche, N., Vico, L., Dolleans, E., Courteix, D. & Benhamou, C.L. ( 2009 ) Assessment of trabecular bone microarchitecture by two different x‐ray microcomputed tomographs: a comparative study of the rat distal tibia using Skyscan and Scanco devices. Medical Physics 36: 1286 – 1297.en_US
dc.identifier.citedreferenceCaubet, J., Petzold, C., Sáez‐Torres, C., Morey, M., Iriarte, J.I., Sánchez, J., Torres, J.J., Ramis, J.M. & Monjo, M. ( 2011 ) Sinus graft with safescraper: 5‐year results. Journal of Oral Maxillofacial Surgery 69: 482 – 490.en_US
dc.identifier.citedreferenceCendre, E., Mitton, D., Roux, J.P., Arlot, M.E., Duboeuf, F., Burt‐Pichat, B., Rumelhart, C., Peix, G. & Meunier, P.J. ( 1999 ) High‐resolution computed tomography for architectural characterization of human lumbar cancellous bone: relationships with histomorphometry and biomechanics. Osteoporosis International 10: 353 – 360.en_US
dc.identifier.citedreferenceChackartchi, T., Iezzi, G., Goldstein, M., Klinger, A., Soskolne, A., Piattelli, A. & Shapira, L. ( 2010 ) Sinus floor augmentation using large (1‐2 mm) or small (0.25‐1 mm) bovine bone mineral particles: a prospective, intra‐individual controlled clinical, micro‐computerized tomography and histomorphometric study. Clinical Oral Implants Research 22: 473 – 480.en_US
dc.identifier.citedreferenceChappard, D., Guillaume, B., Mallet, R., Pascaretti‐Grizon, F., Baslé, M.F. & Libouban, H.L.N. ( 2010 ) Sinus lift augmentation and beta‐TCP: a microCT and histologic analysis on human bone biopsies. Micron 41: 321 – 326.en_US
dc.identifier.citedreferenceChappard, D., Retailleau‐Gaborit, N., Legrand, E., Baslé, M.F. & Audran, M. ( 2005 ) Comparison insight bone measurements by histomorphometry and μCT. Journal of Bone and Mineral Research 20: 1177 – 1184.en_US
dc.identifier.citedreferenceChiapasco, M., Casentini, P. & Zaniboni, M. ( 2009 ) Bone augmentation procedures in implant dentistry. The International Journal of Oral Maxillofacial Implants 24 Suppl: 237 – 259.en_US
dc.identifier.citedreferenceCox, J.F. & Zarb, G.A. ( 1987 ) The longitudinal clinical efficacy of osseointegrated dental implants: a 3‐year report. The International Journal of Oral Maxillofacial Implants 2: 91 – 100.en_US
dc.identifier.citedreferenceDel Fabbro, M., Testori, T., Francetti, L. & Weinstein, R. ( 2004 ) Systematic review of survival rates for implants placed in the grafted maxillary sinus. The International Journal of Periodontics and Restorative Dentistry 24: 565 – 577.en_US
dc.identifier.citedreferenceDing, M. & Hvid, I. ( 2000 ) Quantification of age‐related changes in the structure model type and trabecular thickness of human tibial cancellous bone. Bone 26: 291 – 295.en_US
dc.identifier.citedreferenceDing, M., Odgaard, A. & Hvid, I. ( 1999 ) Accuracy of cancellous bone volume fraction measured by micro‐CT scanning. Journal of Biomechanics 32: 323 – 326.en_US
dc.identifier.citedreferenceEmam, H., Beheiri, G., Elsalanty, M. & Sharawy, M. ( 2011 ) Microcomputed tomographic and histologic analysis of anorganic bone matrix coupled with cell‐binding peptide suspended in sodium hyaluronate carrier after sinus augmentation: a clinical study. The International Journal of Oral Maxillofacial Implants 26: 561 – 570.en_US
dc.identifier.citedreferenceEngquist, B., Bergendal, T. & Kallus, T. ( 1988 ) A retrospective multicenter evaluation of osseointegrated implants supporting overdentures. The International Journal of Oral Maxillofacial Implants 3: 129 – 134.en_US
dc.identifier.citedreferenceFeldkamp, L.A., Goldstein, S.A., Parfitt, A.M., Jesion, G. & Kleerekoper, M. ( 1989 ) The direct examination of three‐dimensional bone architecture in vitro by computed tomography. Journal of Bone and Mineral Research 4: 3 – 11.en_US
dc.identifier.citedreferenceFelsenberg, D. & Boonen, S. ( 2005 ) The bone quality framework: determinants of bone strength and their interrelationships, and implications for osteoporosis management. Clinical Therapy 27: 1 – 11.en_US
dc.identifier.citedreferenceGielkens, P.F., Schortinghuis, J., de Jong, J.R., Huysmans, M.C., Leeuwen, M.B., Raghoebar, G.M., Bos, R.R. & Stegenga, B. ( 2008 ) A comparison of micro‐CT, microradiography and histomorphometry in bone research. Archives of Oral Biology 53: 558 – 566.en_US
dc.identifier.citedreferenceGonzález‐García, R. & Monje, F. ( 2012a ) The reliability of cone‐beam computed tomography to assess bone density at dental implant recipient sites: a histomorphometric analysis by micro‐CT. Clinical Oral Implants Research doi: 10.1111/j.1600‐0501.2011.02390.x. [Epub ahead of print].en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.