A multiple imputation strategy for sequential multiple assignment randomized trials
dc.contributor.author | Shortreed, Susan M. | en_US |
dc.contributor.author | Laber, Eric | en_US |
dc.contributor.author | Scott Stroup, T. | en_US |
dc.contributor.author | Pineau, Joelle | en_US |
dc.contributor.author | Murphy, Susan A. | en_US |
dc.date.accessioned | 2014-10-07T16:09:23Z | |
dc.date.available | WITHHELD_13_MONTHS | en_US |
dc.date.available | 2014-10-07T16:09:23Z | |
dc.date.issued | 2014-10-30 | en_US |
dc.identifier.citation | Shortreed, Susan M.; Laber, Eric; Scott Stroup, T.; Pineau, Joelle; Murphy, Susan A. (2014). "A multiple imputation strategy for sequential multiple assignment randomized trials." Statistics in Medicine 33(24): 4202-4214. | en_US |
dc.identifier.issn | 0277-6715 | en_US |
dc.identifier.issn | 1097-0258 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/108622 | |
dc.description.abstract | Sequential multiple assignment randomized trials (SMARTs) are increasingly being used to inform clinical and intervention science. In a SMART, each patient is repeatedly randomized over time. Each randomization occurs at a critical decision point in the treatment course. These critical decision points often correspond to milestones in the disease process or other changes in a patient's health status. Thus, the timing and number of randomizations may vary across patients and depend on evolving patient‐specific information. This presents unique challenges when analyzing data from a SMART in the presence of missing data. This paper presents the first comprehensive discussion of missing data issues typical of SMART studies: we describe five specific challenges and propose a flexible imputation strategy to facilitate valid statistical estimation and inference using incomplete data from a SMART. To illustrate these contributions, we consider data from the Clinical Antipsychotic Trial of Intervention and Effectiveness, one of the most well‐known SMARTs to date. Copyright © 2014 John Wiley & Sons, Ltd. | en_US |
dc.publisher | Springer‐Verlag, Inc. | en_US |
dc.publisher | Wiley Periodicals, Inc. | en_US |
dc.subject.other | Multiple Imputation | en_US |
dc.subject.other | Sequential Multiple Assignment Randomized Trials | en_US |
dc.subject.other | Missing Data | en_US |
dc.subject.other | Treatment Policies | en_US |
dc.subject.other | Dynamic Treatment Regimes | en_US |
dc.subject.other | Individualized Treatment | en_US |
dc.title | A multiple imputation strategy for sequential multiple assignment randomized trials | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Statistics and Numeric Data | en_US |
dc.subject.hlbsecondlevel | Public Health | en_US |
dc.subject.hlbsecondlevel | Medicine (General) | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.subject.hlbtoplevel | Social Sciences | en_US |
dc.subject.hlbtoplevel | Health Sciences | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/108622/1/sim6223-sup-0001-SupInfo.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/108622/2/sim6223.pdf | |
dc.identifier.doi | 10.1002/sim.6223 | en_US |
dc.identifier.source | Statistics in Medicine | en_US |
dc.identifier.citedreference | Heeringa SG, Little RJA, Raghunathan TE. Multivariate Imputation of Coarsened Survey Data on Household Wealth. Wiley: New York, 2002, 357 – 371. | en_US |
dc.identifier.citedreference | van Buuren S, Brand JPL, Groothuis‐Oudshoorn CGM, Rubin DB. Fully conditional specification in multivariate imputation. Journal of Statistical Computation and Simulation 2006; 76 ( 12 ): 1049 – 1064. | en_US |
dc.identifier.citedreference | van Buuren S. Multiple imputation of discrete and continuous data by fully conditional specification. Statistical Methods in Medical Research 2007; 16 ( 3 ): 219 – 242. | en_US |
dc.identifier.citedreference | Raghunathan TE, Siscovick DS. A multiple imputation analysis of a case–control study of the risk of primary cardiac arrest among pharmacologically treated hypertensives. Applied Statistics 1996; 45: 335 – 352. | en_US |
dc.identifier.citedreference | Kennickell AB. Multiple Imputation and Disclosure Control: The Case of the 1995 Survey of Consumer Finances. The National Academies Press: Washington, D.C., 1997, 248 – 267. | en_US |
dc.identifier.citedreference | van Buuren S, Boshuizen HC, Knook DL. Multiple imputation of missing blood pressure covariates in survival analysis. Statistics in Medicine 1999; 18: 681 – 694. | en_US |
dc.identifier.citedreference | Raghunathan TE, Lepkowski JM, Hoewyk JV, Solenberger P. A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology 2001; 27: 85 – 95. | en_US |
dc.identifier.citedreference | Gelman A, Raghunathan TE. Discussion of Arnold et al. ‘conditionally specified distributions’. Statistical Science 2001; 16: 249 – 274. | en_US |
dc.identifier.citedreference | Faris PD, Ghali WA, Brant R, Norris CM, Galbraith PD, Knudtson ML. Multiple imputation versus data enhancement for dealing with missing data in observational health care outcome analyses. Journal of Clinical Epidemiology 2002; 55: 184 – 191. | en_US |
dc.identifier.citedreference | Abayomi K, Gelman A, Levy M. Diagnostics for multivariate imputations. Journal of the Royal Statistical Society, Series C 2008; 57: 273 – 291. | en_US |
dc.identifier.citedreference | Nevalainen J, Kenward MG, Virtanen SM. Missing values in longitudinal dietary data: a multiple imputation approach based on a fully conditional specification. Statistics in Medicine 2009; 28: 3657 – 3669. | en_US |
dc.identifier.citedreference | Stuart EA, Azur M, Frangakis C, Leaf P. Multiple imputation with large data sets: a case study of the children's mental health initiative. American Journal of Epidemiology 2009; 169 ( 9 ): 1133 – 1139. | en_US |
dc.identifier.citedreference | He Y, Zaslavsky AM, Landrum MB, Harringon DP, Catalano P. Multiple imputation in a large‐scale complex survey: a practical guide. Statistical Methods in Medical Research 2009; 19 ( 6 ): 653 – 670. | en_US |
dc.identifier.citedreference | Gelman A, Speed TP. Characterizing a joint probability distribution by conditionals. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 1993; 55: 185 – 188. | en_US |
dc.identifier.citedreference | Gelman A, Raghunathan TE. Using conditional distributions for missing‐data imputation. Statistical Science 2001; 15: 268 – 69. | en_US |
dc.identifier.citedreference | Arnold BC, Castillo E, Sarabia JM. Conditionally specified distributions: an introduction. Statistical Science 2001; 16 ( 3 ): 249 – 265. | en_US |
dc.identifier.citedreference | Gelman A, Carlin JB, Stern H, Rubin DB. Bayesian Data Analysis. Chapman & Hall: Boca Raton, FL, 1995. | en_US |
dc.identifier.citedreference | Schafer JL, Yucel RM. Computational strategies for multivariate linear mixed models with missing values. Journal of Computational and Graphical Statistics 2002; 11 ( 1 ): 421 – 442. | en_US |
dc.identifier.citedreference | Raghunathan TE, Solenberger PW, Hoewyk JV. IVEware: imputation and variance estimation software user guide 1st ed., Institute for Social Research, 2001. ftp://ftp.isr.umich.edu/pub/src/smp/ive/ive_user.pdf. | en_US |
dc.identifier.citedreference | Gelman A, Hill J, Yajima M, Su Y‐S, Pittau MG. mi: Missing data imputation and model checking, 2010. http://CRAN.R‐project.org/package=mi, R package version 0.08‐06. | en_US |
dc.identifier.citedreference | Horton N, Kleinman KP. Much ADO about nothing: a comparison of missing data methods and software to fit incomplete data regression models. American Statistician 2007; 61 ( 1 ): 79 – 90. | en_US |
dc.identifier.citedreference | Schafer JL. Multiple imputation for multivariate panel or clustered data, 2009. http://cran.r‐project.org/web/packages/pan/pan.pdf, R package version 0.2‐6. | en_US |
dc.identifier.citedreference | van Buuren S, Groothuis‐Oudshoorn K. MICE: multivariate imputation by chained equations in R. Journal of Statistical Software 2011; forthcoming. | en_US |
dc.identifier.citedreference | Gelman A, Mechelen IV, Verbeke G, Heitjan DF, Meulders M. Multiple imputation for model checking: completed‐data plots with missing and latent data. Biometrics 2005; 61: 74 – 85. | en_US |
dc.identifier.citedreference | Robins JM, Orellana L, Rotnitzky A. Estimation and extrapolation of optimal treatment and testing strategies. Statistics in Medicine 2008; 27: 4678 – 4721. | en_US |
dc.identifier.citedreference | Nahum‐Shani I, Qian M, Almirall D, Pelham WE, Gnagy GA, Fabiano B, Waxmonsky JG, Yu J, Murphy SA. Experimental design and primary data analysis methods for comparing adaptive interventions. Psychological Methods 2012; 17 ( 4 ): 457 – 477. | en_US |
dc.identifier.citedreference | Orellana L, Rotnitzky A, Robins JM. Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, part II: proofs and additional results. The International Journal of Biostatistics 2010; 6. | en_US |
dc.identifier.citedreference | Robins JM, Rotnitzky A, Zhao LP. Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association 1995; 90: 106 – 121. | en_US |
dc.identifier.citedreference | Heijtan DF, Rubin DB. Ignorability and coarse data. Annals of Statistics 1991; 19: 2244 – 2253. | en_US |
dc.identifier.citedreference | Carpenter JR, Kenward MG, White IR. Sensitivity analysis after multiple imputation under missing at random: a weighting approach. Statistical Methods in Medical Research 2007; 16 ( 3 ): 259 – 75. | en_US |
dc.identifier.citedreference | Lavori PW, Dawson R. A design for testing clinical strategies: biased adaptive within‐subject. Journal of the Royal Statistical Society, Series A 2000; 163: 19 – 38. | en_US |
dc.identifier.citedreference | Lavori PW, Dawson R. Dynamic treatment regimes: practical design considerations. Clinical Trials 2003; 1: 9 – 20. | en_US |
dc.identifier.citedreference | Murphy SA. An experimental design for the development of adaptive treatment strategies. Statistics in Medicine 2005; 24: 1455 – 1481. | en_US |
dc.identifier.citedreference | Moodie EEM, Richardson TR, Stephens DA. Demystifying optimal dynamic treatment regimes. Biometrics 2007; 63 ( 2 ): 447 – 55. | en_US |
dc.identifier.citedreference | Wahed AS, Tsiatis AA. Optimal estimator for the survival distribution and related quantities for treatment policies in two‐stage randomised designs in clinical trials. Biometrics 2004; 60: 124 – 33. | en_US |
dc.identifier.citedreference | Collins LM, Murphy SA, Bierman KL. A conceptual framework for adaptive preventive interventions. Preventative Science 2004; 5: 185 – 96. | en_US |
dc.identifier.citedreference | Dawson R, Lavori PW. Placebo‐free designs for evaluating new mental health treatments: the use of adaptive strategies. Statistics in Medicine 2004; 23: 3249 – 3262. | en_US |
dc.identifier.citedreference | Larson RA, Dodge RK, Linker CA, Stone RM, Powell BL, Lee EJ, Schulman P, Davey FR, Frankel SR, Bloomfield CD, George SL, Schiffer CA. A randomized controlled trial of filgrastim during remission induction and consolidation chemotherapy for adults with acute lymphoblastic leukemia: Calgb study 9111. Blood 1998; 22: 1556 – 1564. | en_US |
dc.identifier.citedreference | Lavori PW, Rush AJ, Wisniewski SR, Alpert J, Fava M, Kupfer DJ, Nierenberg A, Quitkin FM, Sackeim HA, Thase ME, Trivedi M. Strengthening clinical effectiveness trials: equipoise‐stratified randomization. Biological Psychiatry 2001; 50: 792 – 801. | en_US |
dc.identifier.citedreference | Fava M, Rush A, Trivedi M, Nierenberg A, Thase M, Sackeim HA, Quitkin FM, Wisniewski S, Lavori PW, Rosenbaum JF, Kupher DJ. Background and rationale for the sequenced treatment alternative to relieve depression (STAR*D) study. Psychiatric Clinics of North America 2003; 26 ( 2 ): 457 – 84. | en_US |
dc.identifier.citedreference | Rush AJ, Fava M, Wisniewski SR, Lavori PW, Trivedi MH, Sackeim HA, Thase ME, Nierenberg AA, Quitkin FM, Kashner TM, Kupfer DJ, Rosenbaum JF, Alpert J, Stewart JW, McGrath PJ, Biggs MM, Shores‐Wilson K, Lebowitz BD, Ritz L, Niederehe G, STAR*D Investigators Group. Sequenced treatment alternatives to relieve depression (STAR*D): rationale and design. Controlled Clinical Trials 2004; 25: 19 – 142. | en_US |
dc.identifier.citedreference | Thall PF, Millikan RE, Sung H‐G. Evaluating multiple treatment courses in clinical trials. Statistics in Medicine 2000; 19: 1011 – 1028. | en_US |
dc.identifier.citedreference | Lei H, Nahum‐Shani I, Lynch K, Oslin D, Murphy SA. A smart design for building individualized treatment sequences. Annual Review of Clinical Psychology 2012; 8: 8:21–48. | en_US |
dc.identifier.citedreference | Nahum‐Shani I, Qian M, Almiral D, Pelham W, Gnagy B, Fabiano G, Yu J. Q‐learning: A data analysis method for constructing adaptive interventions. Psychological Methods 2012; 17 ( 4 ): 478 – 494. | en_US |
dc.identifier.citedreference | The methodology center: Projects using smart. http://methodology.psu.edu/ra/adap‐treat‐strat/projects, Accessed: 03/26/2013. | en_US |
dc.identifier.citedreference | Stroup TS, McEvoy JP, Swartz MS, Byerly MJ, Glick ID, Canive JM, McGee M, Simpson GM, Stevens MD, Lieberman JA. The National Institute of Mental Health clinical antipsychotic trials of intervention effectiveness (CATIE) project: schizophrenia trial design and protocol development. Schizophrenia Bulletin 2003; 29 ( 1 ): 15 – 31. | en_US |
dc.identifier.citedreference | Robins JM. A new approach to causal inference in mortality studies with sustained exposure periods—application to control of the healthy worker survivor effect. Mathematical Modelling 1986; 7: 1393 – 1512. | en_US |
dc.identifier.citedreference | Robins JM. Causal inference from complex longitudinal data. In Latent Variables Modeling and Application to Causality, Berkane M (ed.), lecture notes in statistics, vol. 120. Springer‐Verlag, Inc.: NY, 1997; 69 – 117. | en_US |
dc.identifier.citedreference | Murphy SA, van der Laan MJ, Robins JM. Marginal mean models for dynamic treatment regimes. Journal of the American Statistical Association 2001; 96: 1410 – 24. | en_US |
dc.identifier.citedreference | Murphy SM. Optimal dynamic treatment regimes. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 2003; 65 ( 2 ): 331 – 366. | en_US |
dc.identifier.citedreference | Robins JM. Optimal structural nested models for optimal sequential decisions. In Proceedings of the Second Seattle Symposium on Biostatistics, Lin DY, Heagerty P (eds). Springer: New York, NY, USA, 2004; 189 – 326. | en_US |
dc.identifier.citedreference | Little RJA, Rubin DB. Statistical Analysis with Missing Data. J Wiley & Sons: New York, NY, USA, 1987. | en_US |
dc.identifier.citedreference | National Research Council. The Prevention and Treatment of Missing Data in Clinical Trials. The National Academies Press: Washington, D.C., 2010. http://www.nap.edu/. | en_US |
dc.identifier.citedreference | Rubin DB. Multiple Imputation For Nonresponse in Surveys. J Wiley & Sons: New York, NY, USA, 1987. | en_US |
dc.identifier.citedreference | Schafer JL. Analysis of Incomplete Multivariate Data. Chapman & Hall: Boca Raton, FL, 1997. | en_US |
dc.identifier.citedreference | Landrum MB, Becker MP. A multiple imputation strategy for incomplete longitudinal data. Statistics in Medicine 2001; 20: 2741 – 2760. | en_US |
dc.identifier.citedreference | Wood AM, White IR, Hillsdon M, Carpenter J. Comparison of imputation and modelling methods in the analysis of a physical activity trial with missing outcomes. International Journal of Epidemiology 2001; 34: 89 – 99. | en_US |
dc.identifier.citedreference | Engels JM, Diehr P. Imputation of missing longitudinal data: a comparison of methods. Journal of Clinical Epidemiology 2003; 56: 968 – 976. | en_US |
dc.identifier.citedreference | Tang L, Song J, Belin TR, Un’́utzer J. A comparison of imputation methods in a longitudinal randomized clinical trial. Statistics in Medicine 2005; 24: 2111 – 2128. | en_US |
dc.identifier.citedreference | Swartz MS, Perkins DO, Stroup TS, McEvoy JP, Nieri JM, Haal DD. Assessing clinical and functional outcomes in the clinical antipsychotic of intervention effectiveness (CATIE) schizophrenia trial. Schizophrenia Bulletin 2003; 29 ( 1 ): 33 – 43. | en_US |
dc.identifier.citedreference | Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, Keefe RSE, Davis S, Davis CE, Lebowitz BD, Severe J. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. New England Journal of Medicine 2005; 353 ( 12 ): 1209 – 23. | en_US |
dc.identifier.citedreference | McEvoy JP, Lieberman JA, Stroup TS, Davis S, Meltzer HY, Rosenheck RA, Swartz MS, Perkins DO, Keefe RSE, Davis CE, Severe J, Hsiao JK. Effectiveness of clozapine versus olanzapine, quetiapine and risperidone in patients with chronic schizophrenia who did not respond to prior atypical antipsychotic treatment. American Journal of Psychiatry 2006; 163: 600 – 610. | en_US |
dc.identifier.citedreference | Stroup TS, Lieberman JA, McEvoy JP, Davis SM, Meltzer HY, Rosenheck RA, Swartz MS, Perkins DO, Keefe RSE, Davis CE, Severe J, Hsiao JK. Effectiveness of olanzapine, quetiapine, risperidone, and ziprasidone in patients with chronic schizophrenia following discontinuation of a previous atypical antipsychotic. American Journal of Psychiatry 2006; 163: 611 – 622. | en_US |
dc.identifier.citedreference | Adams CE. Schizophrenia trials: past, present and future. Epidemiologia E Psichiatria Sociale 2002; 11 ( 13 ): 144 – 51. | en_US |
dc.identifier.citedreference | Kay SR, Flazbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin 1987; 13 ( 2 ): 261 – 76. | en_US |
dc.identifier.citedreference | Usher K, Foster K, Park T. The metabolic syndrome and schizophrenia: the latest evidence and nursing guidelines for management. Journal of Psychiatry Mental Health Nursing 2006; 13 ( 6 ): 730 – 4. | en_US |
dc.identifier.citedreference | Rummel‐Kluge C, Komossa K, Schwarz S, Hunger H, Schmid F, Lobos CA, Kissling W, Davis JM, Leucht S. Head‐to‐head comparisons of metabolic side effects of second generation antipsychotics in the treatment of schizophrenia: a systematic review and meta‐analysis. Schizophrenia Research 2010; 123 ( 2 ): 225 – 33. | en_US |
dc.identifier.citedreference | Rubin DB. Nested multiple imputation of NMES via partially incompatible MCMC. Statistica Neerlandica 2003; 57 ( 1 ): 3 – 19. | en_US |
dc.identifier.citedreference | Rubin DB. Inference and missing data. Biometrika 1976; 63: 581 – 592. | en_US |
dc.identifier.citedreference | Raghunathan TE, Lepkowski JM, Van Hoewyk J, Solenberger P. A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology 2001; 27: 85 – 95. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.