Show simple item record

A multiple imputation strategy for sequential multiple assignment randomized trials

dc.contributor.authorShortreed, Susan M.en_US
dc.contributor.authorLaber, Ericen_US
dc.contributor.authorScott Stroup, T.en_US
dc.contributor.authorPineau, Joelleen_US
dc.contributor.authorMurphy, Susan A.en_US
dc.date.accessioned2014-10-07T16:09:23Z
dc.date.availableWITHHELD_13_MONTHSen_US
dc.date.available2014-10-07T16:09:23Z
dc.date.issued2014-10-30en_US
dc.identifier.citationShortreed, Susan M.; Laber, Eric; Scott Stroup, T.; Pineau, Joelle; Murphy, Susan A. (2014). "A multiple imputation strategy for sequential multiple assignment randomized trials." Statistics in Medicine 33(24): 4202-4214.en_US
dc.identifier.issn0277-6715en_US
dc.identifier.issn1097-0258en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108622
dc.description.abstractSequential multiple assignment randomized trials (SMARTs) are increasingly being used to inform clinical and intervention science. In a SMART, each patient is repeatedly randomized over time. Each randomization occurs at a critical decision point in the treatment course. These critical decision points often correspond to milestones in the disease process or other changes in a patient's health status. Thus, the timing and number of randomizations may vary across patients and depend on evolving patient‐specific information. This presents unique challenges when analyzing data from a SMART in the presence of missing data. This paper presents the first comprehensive discussion of missing data issues typical of SMART studies: we describe five specific challenges and propose a flexible imputation strategy to facilitate valid statistical estimation and inference using incomplete data from a SMART. To illustrate these contributions, we consider data from the Clinical Antipsychotic Trial of Intervention and Effectiveness, one of the most well‐known SMARTs to date. Copyright © 2014 John Wiley & Sons, Ltd.en_US
dc.publisherSpringer‐Verlag, Inc.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherMultiple Imputationen_US
dc.subject.otherSequential Multiple Assignment Randomized Trialsen_US
dc.subject.otherMissing Dataen_US
dc.subject.otherTreatment Policiesen_US
dc.subject.otherDynamic Treatment Regimesen_US
dc.subject.otherIndividualized Treatmenten_US
dc.titleA multiple imputation strategy for sequential multiple assignment randomized trialsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelStatistics and Numeric Dataen_US
dc.subject.hlbsecondlevelPublic Healthen_US
dc.subject.hlbsecondlevelMedicine (General)en_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelSocial Sciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108622/1/sim6223-sup-0001-SupInfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108622/2/sim6223.pdf
dc.identifier.doi10.1002/sim.6223en_US
dc.identifier.sourceStatistics in Medicineen_US
dc.identifier.citedreferenceHeeringa SG, Little RJA, Raghunathan TE. Multivariate Imputation of Coarsened Survey Data on Household Wealth. Wiley: New York, 2002, 357 – 371.en_US
dc.identifier.citedreferencevan Buuren S, Brand JPL, Groothuis‐Oudshoorn CGM, Rubin DB. Fully conditional specification in multivariate imputation. Journal of Statistical Computation and Simulation 2006; 76 ( 12 ): 1049 – 1064.en_US
dc.identifier.citedreferencevan Buuren S. Multiple imputation of discrete and continuous data by fully conditional specification. Statistical Methods in Medical Research 2007; 16 ( 3 ): 219 – 242.en_US
dc.identifier.citedreferenceRaghunathan TE, Siscovick DS. A multiple imputation analysis of a case–control study of the risk of primary cardiac arrest among pharmacologically treated hypertensives. Applied Statistics 1996; 45: 335 – 352.en_US
dc.identifier.citedreferenceKennickell AB. Multiple Imputation and Disclosure Control: The Case of the 1995 Survey of Consumer Finances. The National Academies Press: Washington, D.C., 1997, 248 – 267.en_US
dc.identifier.citedreferencevan Buuren S, Boshuizen HC, Knook DL. Multiple imputation of missing blood pressure covariates in survival analysis. Statistics in Medicine 1999; 18: 681 – 694.en_US
dc.identifier.citedreferenceRaghunathan TE, Lepkowski JM, Hoewyk JV, Solenberger P. A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology 2001; 27: 85 – 95.en_US
dc.identifier.citedreferenceGelman A, Raghunathan TE. Discussion of Arnold et al. ‘conditionally specified distributions’. Statistical Science 2001; 16: 249 – 274.en_US
dc.identifier.citedreferenceFaris PD, Ghali WA, Brant R, Norris CM, Galbraith PD, Knudtson ML. Multiple imputation versus data enhancement for dealing with missing data in observational health care outcome analyses. Journal of Clinical Epidemiology 2002; 55: 184 – 191.en_US
dc.identifier.citedreferenceAbayomi K, Gelman A, Levy M. Diagnostics for multivariate imputations. Journal of the Royal Statistical Society, Series C 2008; 57: 273 – 291.en_US
dc.identifier.citedreferenceNevalainen J, Kenward MG, Virtanen SM. Missing values in longitudinal dietary data: a multiple imputation approach based on a fully conditional specification. Statistics in Medicine 2009; 28: 3657 – 3669.en_US
dc.identifier.citedreferenceStuart EA, Azur M, Frangakis C, Leaf P. Multiple imputation with large data sets: a case study of the children's mental health initiative. American Journal of Epidemiology 2009; 169 ( 9 ): 1133 – 1139.en_US
dc.identifier.citedreferenceHe Y, Zaslavsky AM, Landrum MB, Harringon DP, Catalano P. Multiple imputation in a large‐scale complex survey: a practical guide. Statistical Methods in Medical Research 2009; 19 ( 6 ): 653 – 670.en_US
dc.identifier.citedreferenceGelman A, Speed TP. Characterizing a joint probability distribution by conditionals. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 1993; 55: 185 – 188.en_US
dc.identifier.citedreferenceGelman A, Raghunathan TE. Using conditional distributions for missing‐data imputation. Statistical Science 2001; 15: 268 – 69.en_US
dc.identifier.citedreferenceArnold BC, Castillo E, Sarabia JM. Conditionally specified distributions: an introduction. Statistical Science 2001; 16 ( 3 ): 249 – 265.en_US
dc.identifier.citedreferenceGelman A, Carlin JB, Stern H, Rubin DB. Bayesian Data Analysis. Chapman & Hall: Boca Raton, FL, 1995.en_US
dc.identifier.citedreferenceSchafer JL, Yucel RM. Computational strategies for multivariate linear mixed models with missing values. Journal of Computational and Graphical Statistics 2002; 11 ( 1 ): 421 – 442.en_US
dc.identifier.citedreferenceRaghunathan TE, Solenberger PW, Hoewyk JV. IVEware: imputation and variance estimation software user guide 1st ed., Institute for Social Research, 2001. ftp://ftp.isr.umich.edu/pub/src/smp/ive/ive_user.pdf.en_US
dc.identifier.citedreferenceGelman A, Hill J, Yajima M, Su Y‐S, Pittau MG. mi: Missing data imputation and model checking, 2010. http://CRAN.R‐project.org/package=mi, R package version 0.08‐06.en_US
dc.identifier.citedreferenceHorton N, Kleinman KP. Much ADO about nothing: a comparison of missing data methods and software to fit incomplete data regression models. American Statistician 2007; 61 ( 1 ): 79 – 90.en_US
dc.identifier.citedreferenceSchafer JL. Multiple imputation for multivariate panel or clustered data, 2009. http://cran.r‐project.org/web/packages/pan/pan.pdf, R package version 0.2‐6.en_US
dc.identifier.citedreferencevan Buuren S, Groothuis‐Oudshoorn K. MICE: multivariate imputation by chained equations in R. Journal of Statistical Software 2011; forthcoming.en_US
dc.identifier.citedreferenceGelman A, Mechelen IV, Verbeke G, Heitjan DF, Meulders M. Multiple imputation for model checking: completed‐data plots with missing and latent data. Biometrics 2005; 61: 74 – 85.en_US
dc.identifier.citedreferenceRobins JM, Orellana L, Rotnitzky A. Estimation and extrapolation of optimal treatment and testing strategies. Statistics in Medicine 2008; 27: 4678 – 4721.en_US
dc.identifier.citedreferenceNahum‐Shani I, Qian M, Almirall D, Pelham WE, Gnagy GA, Fabiano B, Waxmonsky JG, Yu J, Murphy SA. Experimental design and primary data analysis methods for comparing adaptive interventions. Psychological Methods 2012; 17 ( 4 ): 457 – 477.en_US
dc.identifier.citedreferenceOrellana L, Rotnitzky A, Robins JM. Dynamic regime marginal structural mean models for estimation of optimal dynamic treatment regimes, part II: proofs and additional results. The International Journal of Biostatistics 2010; 6.en_US
dc.identifier.citedreferenceRobins JM, Rotnitzky A, Zhao LP. Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association 1995; 90: 106 – 121.en_US
dc.identifier.citedreferenceHeijtan DF, Rubin DB. Ignorability and coarse data. Annals of Statistics 1991; 19: 2244 – 2253.en_US
dc.identifier.citedreferenceCarpenter JR, Kenward MG, White IR. Sensitivity analysis after multiple imputation under missing at random: a weighting approach. Statistical Methods in Medical Research 2007; 16 ( 3 ): 259 – 75.en_US
dc.identifier.citedreferenceLavori PW, Dawson R. A design for testing clinical strategies: biased adaptive within‐subject. Journal of the Royal Statistical Society, Series A 2000; 163: 19 – 38.en_US
dc.identifier.citedreferenceLavori PW, Dawson R. Dynamic treatment regimes: practical design considerations. Clinical Trials 2003; 1: 9 – 20.en_US
dc.identifier.citedreferenceMurphy SA. An experimental design for the development of adaptive treatment strategies. Statistics in Medicine 2005; 24: 1455 – 1481.en_US
dc.identifier.citedreferenceMoodie EEM, Richardson TR, Stephens DA. Demystifying optimal dynamic treatment regimes. Biometrics 2007; 63 ( 2 ): 447 – 55.en_US
dc.identifier.citedreferenceWahed AS, Tsiatis AA. Optimal estimator for the survival distribution and related quantities for treatment policies in two‐stage randomised designs in clinical trials. Biometrics 2004; 60: 124 – 33.en_US
dc.identifier.citedreferenceCollins LM, Murphy SA, Bierman KL. A conceptual framework for adaptive preventive interventions. Preventative Science 2004; 5: 185 – 96.en_US
dc.identifier.citedreferenceDawson R, Lavori PW. Placebo‐free designs for evaluating new mental health treatments: the use of adaptive strategies. Statistics in Medicine 2004; 23: 3249 – 3262.en_US
dc.identifier.citedreferenceLarson RA, Dodge RK, Linker CA, Stone RM, Powell BL, Lee EJ, Schulman P, Davey FR, Frankel SR, Bloomfield CD, George SL, Schiffer CA. A randomized controlled trial of filgrastim during remission induction and consolidation chemotherapy for adults with acute lymphoblastic leukemia: Calgb study 9111. Blood 1998; 22: 1556 – 1564.en_US
dc.identifier.citedreferenceLavori PW, Rush AJ, Wisniewski SR, Alpert J, Fava M, Kupfer DJ, Nierenberg A, Quitkin FM, Sackeim HA, Thase ME, Trivedi M. Strengthening clinical effectiveness trials: equipoise‐stratified randomization. Biological Psychiatry 2001; 50: 792 – 801.en_US
dc.identifier.citedreferenceFava M, Rush A, Trivedi M, Nierenberg A, Thase M, Sackeim HA, Quitkin FM, Wisniewski S, Lavori PW, Rosenbaum JF, Kupher DJ. Background and rationale for the sequenced treatment alternative to relieve depression (STAR*D) study. Psychiatric Clinics of North America 2003; 26 ( 2 ): 457 – 84.en_US
dc.identifier.citedreferenceRush AJ, Fava M, Wisniewski SR, Lavori PW, Trivedi MH, Sackeim HA, Thase ME, Nierenberg AA, Quitkin FM, Kashner TM, Kupfer DJ, Rosenbaum JF, Alpert J, Stewart JW, McGrath PJ, Biggs MM, Shores‐Wilson K, Lebowitz BD, Ritz L, Niederehe G, STAR*D Investigators Group. Sequenced treatment alternatives to relieve depression (STAR*D): rationale and design. Controlled Clinical Trials 2004; 25: 19 – 142.en_US
dc.identifier.citedreferenceThall PF, Millikan RE, Sung H‐G. Evaluating multiple treatment courses in clinical trials. Statistics in Medicine 2000; 19: 1011 – 1028.en_US
dc.identifier.citedreferenceLei H, Nahum‐Shani I, Lynch K, Oslin D, Murphy SA. A smart design for building individualized treatment sequences. Annual Review of Clinical Psychology 2012; 8: 8:21–48.en_US
dc.identifier.citedreferenceNahum‐Shani I, Qian M, Almiral D, Pelham W, Gnagy B, Fabiano G, Yu J. Q‐learning: A data analysis method for constructing adaptive interventions. Psychological Methods 2012; 17 ( 4 ): 478 – 494.en_US
dc.identifier.citedreferenceThe methodology center: Projects using smart. http://methodology.psu.edu/ra/adap‐treat‐strat/projects, Accessed: 03/26/2013.en_US
dc.identifier.citedreferenceStroup TS, McEvoy JP, Swartz MS, Byerly MJ, Glick ID, Canive JM, McGee M, Simpson GM, Stevens MD, Lieberman JA. The National Institute of Mental Health clinical antipsychotic trials of intervention effectiveness (CATIE) project: schizophrenia trial design and protocol development. Schizophrenia Bulletin 2003; 29 ( 1 ): 15 – 31.en_US
dc.identifier.citedreferenceRobins JM. A new approach to causal inference in mortality studies with sustained exposure periods—application to control of the healthy worker survivor effect. Mathematical Modelling 1986; 7: 1393 – 1512.en_US
dc.identifier.citedreferenceRobins JM. Causal inference from complex longitudinal data. In Latent Variables Modeling and Application to Causality, Berkane M (ed.), lecture notes in statistics, vol.  120. Springer‐Verlag, Inc.: NY, 1997; 69 – 117.en_US
dc.identifier.citedreferenceMurphy SA, van der Laan MJ, Robins JM. Marginal mean models for dynamic treatment regimes. Journal of the American Statistical Association 2001; 96: 1410 – 24.en_US
dc.identifier.citedreferenceMurphy SM. Optimal dynamic treatment regimes. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 2003; 65 ( 2 ): 331 – 366.en_US
dc.identifier.citedreferenceRobins JM. Optimal structural nested models for optimal sequential decisions. In Proceedings of the Second Seattle Symposium on Biostatistics, Lin DY, Heagerty P (eds). Springer: New York, NY, USA, 2004; 189 – 326.en_US
dc.identifier.citedreferenceLittle RJA, Rubin DB. Statistical Analysis with Missing Data. J Wiley & Sons: New York, NY, USA, 1987.en_US
dc.identifier.citedreferenceNational Research Council. The Prevention and Treatment of Missing Data in Clinical Trials. The National Academies Press: Washington, D.C., 2010. http://www.nap.edu/.en_US
dc.identifier.citedreferenceRubin DB. Multiple Imputation For Nonresponse in Surveys. J Wiley & Sons: New York, NY, USA, 1987.en_US
dc.identifier.citedreferenceSchafer JL. Analysis of Incomplete Multivariate Data. Chapman & Hall: Boca Raton, FL, 1997.en_US
dc.identifier.citedreferenceLandrum MB, Becker MP. A multiple imputation strategy for incomplete longitudinal data. Statistics in Medicine 2001; 20: 2741 – 2760.en_US
dc.identifier.citedreferenceWood AM, White IR, Hillsdon M, Carpenter J. Comparison of imputation and modelling methods in the analysis of a physical activity trial with missing outcomes. International Journal of Epidemiology 2001; 34: 89 – 99.en_US
dc.identifier.citedreferenceEngels JM, Diehr P. Imputation of missing longitudinal data: a comparison of methods. Journal of Clinical Epidemiology 2003; 56: 968 – 976.en_US
dc.identifier.citedreferenceTang L, Song J, Belin TR, Un’́utzer J. A comparison of imputation methods in a longitudinal randomized clinical trial. Statistics in Medicine 2005; 24: 2111 – 2128.en_US
dc.identifier.citedreferenceSwartz MS, Perkins DO, Stroup TS, McEvoy JP, Nieri JM, Haal DD. Assessing clinical and functional outcomes in the clinical antipsychotic of intervention effectiveness (CATIE) schizophrenia trial. Schizophrenia Bulletin 2003; 29 ( 1 ): 33 – 43.en_US
dc.identifier.citedreferenceLieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, Keefe RSE, Davis S, Davis CE, Lebowitz BD, Severe J. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. New England Journal of Medicine 2005; 353 ( 12 ): 1209 – 23.en_US
dc.identifier.citedreferenceMcEvoy JP, Lieberman JA, Stroup TS, Davis S, Meltzer HY, Rosenheck RA, Swartz MS, Perkins DO, Keefe RSE, Davis CE, Severe J, Hsiao JK. Effectiveness of clozapine versus olanzapine, quetiapine and risperidone in patients with chronic schizophrenia who did not respond to prior atypical antipsychotic treatment. American Journal of Psychiatry 2006; 163: 600 – 610.en_US
dc.identifier.citedreferenceStroup TS, Lieberman JA, McEvoy JP, Davis SM, Meltzer HY, Rosenheck RA, Swartz MS, Perkins DO, Keefe RSE, Davis CE, Severe J, Hsiao JK. Effectiveness of olanzapine, quetiapine, risperidone, and ziprasidone in patients with chronic schizophrenia following discontinuation of a previous atypical antipsychotic. American Journal of Psychiatry 2006; 163: 611 – 622.en_US
dc.identifier.citedreferenceAdams CE. Schizophrenia trials: past, present and future. Epidemiologia E Psichiatria Sociale 2002; 11 ( 13 ): 144 – 51.en_US
dc.identifier.citedreferenceKay SR, Flazbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin 1987; 13 ( 2 ): 261 – 76.en_US
dc.identifier.citedreferenceUsher K, Foster K, Park T. The metabolic syndrome and schizophrenia: the latest evidence and nursing guidelines for management. Journal of Psychiatry Mental Health Nursing 2006; 13 ( 6 ): 730 – 4.en_US
dc.identifier.citedreferenceRummel‐Kluge C, Komossa K, Schwarz S, Hunger H, Schmid F, Lobos CA, Kissling W, Davis JM, Leucht S. Head‐to‐head comparisons of metabolic side effects of second generation antipsychotics in the treatment of schizophrenia: a systematic review and meta‐analysis. Schizophrenia Research 2010; 123 ( 2 ): 225 – 33.en_US
dc.identifier.citedreferenceRubin DB. Nested multiple imputation of NMES via partially incompatible MCMC. Statistica Neerlandica 2003; 57 ( 1 ): 3 – 19.en_US
dc.identifier.citedreferenceRubin DB. Inference and missing data. Biometrika 1976; 63: 581 – 592.en_US
dc.identifier.citedreferenceRaghunathan TE, Lepkowski JM, Van Hoewyk J, Solenberger P. A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology 2001; 27: 85 – 95.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.