Show simple item record

Universal Design Principles for Cascade Heterojunction Solar Cells with High Fill Factors and Internal Quantum Efficiencies Approaching 100%

dc.contributor.authorBarito, Adamen_US
dc.contributor.authorSykes, Matthew E.en_US
dc.contributor.authorHuang, Bingyuanen_US
dc.contributor.authorBilby, Daviden_US
dc.contributor.authorFrieberg, Bradleyen_US
dc.contributor.authorKim, Jinsangen_US
dc.contributor.authorGreen, Peter F.en_US
dc.contributor.authorShtein, Maxen_US
dc.date.accessioned2014-10-07T16:09:25Z
dc.date.availableWITHHELD_12_MONTHSen_US
dc.date.available2014-10-07T16:09:25Z
dc.date.issued2014-09en_US
dc.identifier.citationBarito, Adam; Sykes, Matthew E.; Huang, Bingyuan; Bilby, David; Frieberg, Bradley; Kim, Jinsang; Green, Peter F.; Shtein, Max (2014). "Universal Design Principles for Cascade Heterojunction Solar Cells with High Fill Factors and Internal Quantum Efficiencies Approaching 100%." Advanced Energy Materials 4(13): n/a-n/a.en_US
dc.identifier.issn1614-6832en_US
dc.identifier.issn1614-6840en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108628
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherAcademicen_US
dc.subject.otherOrganic Photovoltaicsen_US
dc.subject.otherCascade Heterojunctionsen_US
dc.subject.otherQuantum Efficiencyen_US
dc.subject.otherSolar Cellsen_US
dc.titleUniversal Design Principles for Cascade Heterojunction Solar Cells with High Fill Factors and Internal Quantum Efficiencies Approaching 100%en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108628/1/aenm201400216.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108628/2/aenm201400216-sup-0001-S1.pdf
dc.identifier.doi10.1002/aenm.201400216en_US
dc.identifier.sourceAdvanced Energy Materialsen_US
dc.identifier.citedreferenceB. Rand, D. Burk, S. Forrest, Phys. Rev. B 2007, 75.en_US
dc.identifier.citedreferenceB. E. Lassiter, C. Kyle Renshaw, S. R. Forrest, J. Appl. Phys. 2013, 113, 214505.en_US
dc.identifier.citedreferenceR. Pandey, R. J. Holmes, Appl. Phys. Lett. 2012, 100, 083303.en_US
dc.identifier.citedreferencea) G. Zhang, W. Li, B. Chu, L. Chen, F. Yan, J. Zhu, Y. Chen, C. S. Lee, Appl. Phys. Lett. 2009, 94, 143302; b) M. Sim, J. S. Kim, C. Shim, K. Cho, Chem. Phys. Lett. 2013, 557, 88; c) T. D. Heidel, D. Hochbaum, J. M. Sussman, V. Singh, M. E. Bahlke, I. Hiromi, J. Lee, M. A. Baldo, J. Appl. Phys. 2011, 109, 104502; d) Z. R. Hong, R. Lessmann, B. Maennig, Q. Huang, K. Harada, M. Riede, K. Leo, J. Appl. Phys. 2009, 106, 064511.en_US
dc.identifier.citedreferenceK. Cnops, B. P. Rand, D. Cheyns, P. Heremans, Appl. Phys. Lett. 2012, 101, 143301.en_US
dc.identifier.citedreferenceA. Barito, M. E. Sykes, D. Bilby, J. Amonoo, Y. Jin, S. E. Morris, P. F. Green, J. Kim, M. Shtein, J. Appl. Phys. 2013, 113, 203110.en_US
dc.identifier.citedreferenceA. Foertig, A. Wagenpfahl, T. Gerbich, D. Cheyns, V. Dyakonov, C. Deibel, Adv. Energy Mater. 2012, 2, 1483.en_US
dc.identifier.citedreferenceW. Tress, K. Leo, M. Riede, Adv. Funct. Mater. 2011, 21, 2140.en_US
dc.identifier.citedreferenceD. Cheyns, J. Poortmans, P. Heremans, C. Deibel, S. Verlaak, B. Rand, J. Genoe, Phys. Rev. B 2008, 77.en_US
dc.identifier.citedreferencea) A. Kahn, N. Koch, W. Gao, J. Polym. Sci. Part B: Polym. Phys. 2003, 41, 2529; b) M. T. Greiner, M. G. Helander, W. M. Tang, Z. B. Wang, J. Qiu, Z. H. Lu, Nat. Mater. 2012, 11, 76.en_US
dc.identifier.citedreferenceZ.‐L. Guan, J. B. Kim, H. Wang, C. Jaye, D. A. Fischer, Y.‐L. Loo, A. Kahn, Org. Electron. 2010, 11, 1779.en_US
dc.identifier.citedreferenceM. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerenes and Carbon Nanotubes, Academic, Waltham, MA 1996.en_US
dc.identifier.citedreferenceX. Xiao, J. D. Zimmerman, B. E. Lassiter, K. J. Bergemann, S. R. Forrest, Appl. Phys. Lett. 2013, 102, 073302.en_US
dc.identifier.citedreferenceY.‐C. Tseng, A. U. Mane, J. W. Elam, S. B. Darling, Sol. Energy Mater. Sol. Cells 2012, 99, 235.en_US
dc.identifier.citedreferenceM. Zhang, H. Wang, C. W. Tang, Appl. Phys. Lett. 2010, 97, 143503.en_US
dc.identifier.citedreferenceP. Peumans, S. R. Forrest, Chem. Phys. Lett. 2004, 398, 27.en_US
dc.identifier.citedreferencea) L. Onsager, Phys. Rev. 1938, 54, 554; b) C. L. Braun, J. Chem. Phys. 1984, 80, 4157.en_US
dc.identifier.citedreferencea) A. Wagenpfahl, D. Rauh, M. Binder, C. Deibel, V. Dyakonov, Phys. Rev. B 2010, 82; b) M. Glatthaar, M. Riede, N. Keegan, K. Sylvester‐Hvid, B. Zimmermann, M. Niggemann, A. Hinsch, A. Gombert, Sol. Energy Mater. Sol. Cells 2007, 91, 390; c) M. R. Lilliedal, A. J. Medford, M. V. Madsen, K. Norrman, F. C. Krebs, Sol. Energy Mater. Sol. Cells 2010, 94, 2018.en_US
dc.identifier.citedreferenceC. Uhrich, D. Wynands, S. Olthof, M. K. Riede, K. Leo, S. Sonntag, B. Maennig, M. Pfeiffer, J. Appl. Phys. 2008, 104, 043107.en_US
dc.identifier.citedreferencea) N. C. Giebink, B. E. Lassiter, G. P. Wiederrecht, M. R. Wasielewski, S. R. Forrest, Phys. Rev. B 2010, 82; b) N. C. Giebink, G. P. Wiederrecht, M. R. Wasielewski, S. R. Forrest, Phys. Rev. B 2010, 82; c) C. W. Schlenker, M. E. Thompson, Chem. Commun. 2011, 47, 3702.en_US
dc.identifier.citedreferencea) J. Yang, J. Shen, J. Phys. D 2000, 33, 1768; b) N. Matsumoto, C. Adachi, J. Phys. Chem. C 2010, 114, 4652; c) F. Liu, P. Paul Ruden, I. H. Campbell, D. L. Smith, Appl. Phys. Lett. 2011, 99, 123301.en_US
dc.identifier.citedreferenceC. Kulshreshtha, G. W. Kim, R. Lampande, D. H. Huh, M. Chae, J. H. Kwon, J. Mater. Chem. A 2013, 1, 4077.en_US
dc.identifier.citedreferenceB. Verreet, K. Cnops, D. Cheyns, P. Heremans, A. Stesmans, G. Zango, C. G. Claessens, T. Torres, B. P. Rand, Adv. Energy Mater. 2014, DOI: 10.1002/aenm.201301413.en_US
dc.identifier.citedreferenceK. Cnops, B. P. Rand, D. Cheyns, B. Verreet, M. A. Empl, P. Heremans, Nat. Commun. 2014, 5, 3406.en_US
dc.identifier.citedreferenceC. Kulshreshtha, J. W. Choi, J.‐k. Kim, W. S. Jeon, M. C. Suh, Y. Park, J. H. Kwon, Appl. Phys. Lett. 2011, 99, 023308.en_US
dc.identifier.citedreferenceC. H. Seaman, Sol. Energy 1982, 29, 291.en_US
dc.identifier.citedreferencea) S. E. Gledhill, B. Scott, B. A. Gregg, J. Mater. Res. 2011, 20, 3167; b) S. B. Darling, F. You, RSC Adv. 2013, 3, 17633; c) C. J. Brabec, Sol. Energy Mater. Sol. Cells 2004, 83, 273.en_US
dc.identifier.citedreferencea) P. Peumans, A. Yakimov, S. R. Forrest, J. Appl. Phys. 2003, 93, 3693; b) W. Chen, M. P. Nikiforov, S. B. Darling, Energy Environ. Sci. 2012, 5, 8045.en_US
dc.identifier.citedreferencea) C. W. Tang, Appl. Phys. Lett. 1986, 48, 183; b) B. A. Gregg, J. Phys. Chem. B 2003, 107, 4688.en_US
dc.identifier.citedreferencea) G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science 1995, 270, 1789; b) G. Chen, H. Sasabe, Z. Wang, X. F. Wang, Z. Hong, Y. Yang, J. Kido, Adv. Mater. 2012, 24, 2768; c) R. Pandey, Y. Zou, R. J. Holmes, Appl. Phys. Lett. 2012, 101, 033308; d) J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, A. B. Holmes, Nature 1995, 376, 498.en_US
dc.identifier.citedreferenceA. Yakimov, S. R. Forrest, Appl. Phys. Lett. 2002, 80, 1667.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.