Show simple item record

Intracortical Remodeling Parameters Are Associated With Measures of Bone Robustness

dc.contributor.authorGoldman, Haviva M.en_US
dc.contributor.authorHampson, Naomi A.en_US
dc.contributor.authorGuth, J. Jareden_US
dc.contributor.authorLin, Daviden_US
dc.contributor.authorJepsen, Karl J.en_US
dc.date.accessioned2014-10-07T16:09:26Z
dc.date.availableWITHHELD_13_MONTHSen_US
dc.date.available2014-10-07T16:09:26Z
dc.date.issued2014-10en_US
dc.identifier.citationGoldman, Haviva M.; Hampson, Naomi A.; Guth, J. Jared; Lin, David; Jepsen, Karl J. (2014). "Intracortical Remodeling Parameters Are Associated With Measures of Bone Robustness." The Anatomical Record 297(10): 1817-1828.en_US
dc.identifier.issn1932-8486en_US
dc.identifier.issn1932-8494en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108629
dc.description.abstractPrior work identified a novel association between bone robustness and porosity, which may be part of a broader interaction whereby the skeletal system compensates for the natural variation in robustness (bone width relative to length) by modulating tissue‐level mechanical properties to increase stiffness of slender bones and to reduce mass of robust bones. To further understand this association, we tested the hypothesis that the relationship between robustness and porosity is mediated through intracortical, BMU‐based (basic multicellular unit) remodeling. We quantified cortical porosity, mineralization, and histomorphometry at two sites (38% and 66% of the length) in human cadaveric tibiae. We found significant correlations between robustness and several histomorphometric variables (e.g., % secondary tissue [R 2  = 0.68, P  < 0.004], total osteon area [R 2  = 0.42, P  < 0.04]) at the 66% site. Although these associations were weaker at the 38% site, significant correlations between histological variables were identified between the two sites indicating that both respond to the same global effects and demonstrate a similar character at the whole bone level. Thus, robust bones tended to have larger and more numerous osteons with less infilling, resulting in bigger pores and more secondary bone area. These results suggest that local regulation of BMU‐based remodeling may be further modulated by a global signal associated with robustness, such that remodeling is suppressed in slender bones but not in robust bones. Elucidating this mechanism further is crucial for better understanding the complex adaptive nature of the skeleton, and how interindividual variation in remodeling differentially impacts skeletal aging and an individuals' potential response to prophylactic treatments. Anat Rec, 297:1817–1828, 2014. © 2014 Wiley Periodicals, Inc.en_US
dc.publisherWileyen_US
dc.subject.otherRemodelingen_US
dc.subject.otherCortical Boneen_US
dc.subject.otherPorosityen_US
dc.subject.otherRobustnessen_US
dc.subject.otherComplex Adaptive Systemen_US
dc.titleIntracortical Remodeling Parameters Are Associated With Measures of Bone Robustnessen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108629/1/ar22962.pdf
dc.identifier.doi10.1002/ar.22962en_US
dc.identifier.sourceThe Anatomical Recorden_US
dc.identifier.citedreferenceSkedros JG. 2012. Interpretting load history in limb‐bone diaphyses: important considerations and their biomechanical foundations. In: Crowder C, Stout S, editors. Bone Histology: An Anthrological Perspective. Boca Raton: CRC Press. p 153 – 220.en_US
dc.identifier.citedreferenceSchlecht SH, Pinto DC, Agnew AM, Stout SD. 2012. Brief communication: the effects of disuse on the mechanical properties of bone: what unloading tells us about the adaptive nature of skeletal tissue. Am J Phys Anthropol 149: 599 – 605.en_US
dc.identifier.citedreferenceSeibel MJ. 2002. Nutrition and molecular markers of bone remodelling. Curr Opin Clin Nutr Metab Care 5: 525 – 531.en_US
dc.identifier.citedreferenceSkedros JG, Hunt KJ, Bloebaum RD. 2004. Relationships of loading history and structural and material characteristics of bone: development of the mule deer calcaneus. J Morphol 259: 281 – 307.en_US
dc.identifier.citedreferenceSkedros JG, Keenan KE, Williams TJ, Kiser CJ. 2013. Secondary osteon size and collagen/lamellar organization ("osteon morphotypes") are not coupled, but potentially adapt independently for local strain mode or magnitude. J Struct Biol 181: 95 – 107.en_US
dc.identifier.citedreferenceSkedros JG, Mendenhall SD, Kiser CJ, Winet H. 2009. Interpreting cortical bone adaptation and load history by quantifying osteon morphotypes in circularly polarized light images. Bone 44: 392 – 403.en_US
dc.identifier.citedreferenceSkedros JG, Su SC, Bloebaum RD. 1997. Biomechanical implications of mineral content and microstructural variations in cortical bone of horse, elk, and sheep calcanei. Anat Rec 249: 297 – 316.en_US
dc.identifier.citedreferenceStout SD, Crowder C. 2012. Bone remodeling, histomorphology, and histomorphometry. In: Crowder C, Stout S, editors. Bone Histology: An Anthropological Perspective. Bacon Raton, FL: CRC Press. p 1 – 22.en_US
dc.identifier.citedreferenceStout SD, Lueck R. 1995. Bone remodeling rates and skeletal maturation in three archaeological skeletal populations. Am J Phys Anthropol 98: 161 – 171.en_US
dc.identifier.citedreferenceStout SD, Paine RR. 1994. Brief communication: bone remodeling rates: a test of an algorithm for estimating missing osteons. Am J Phys Anthropol 93: 123 – 129.en_US
dc.identifier.citedreferenceTakahashi H, Epker B, Frost HM. 1965. Relation between age and size of osteons in man. Henry Ford Hosp Med Bull 13: 25 – 31.en_US
dc.identifier.citedreferenceThomas CD, Feik SA, Clement JG. 2005. Regional variation of intracortical porosity in the midshaft of the human femur: age and sex differences. J Anat 206: 115 – 125.en_US
dc.identifier.citedreferenceThomas CD, Feik SA, Clement JG. 2006. Increase in pore area, and not pore density, is the main determinant in the development of porosity in human cortical bone. J Anat 209: 219 – 230.en_US
dc.identifier.citedreferenceThompson DD. 1980. Age changes in bone mineralization, cortical thickness, and haversian canal area. Calcif Tissue Int 31: 5 – 11.en_US
dc.identifier.citedreferenceThompson DD, Gunness‐Hey M. 1981. Bone mineral‐osteon analysis of Yupik‐Inupiaq skeletons. Am J Phys Anthropol 55: 1 – 7.en_US
dc.identifier.citedreferenceTommasini SM, Nasser P, Hu B, Jepsen KJ. 2008. Biological co‐adaptation of morphological and composition traits contributes to mechanical functionality and skeletal fragility. J Bone Miner Res 23: 236 – 246.en_US
dc.identifier.citedreferenceTommasini SM, Nasser P, Jepsen KJ. 2007. Sexual dimorphism affects tibia size and shape but not tissue‐level mechanical properties. Bone 40: 498 – 505.en_US
dc.identifier.citedreferenceTommasini SM, Nasser P, Schaffler MB, Jepsen KJ. 2005. Relationship between bone morphology and bone quality in male tibias: implications for stress fracture risk. J Bone Miner Res 20: 1372 – 1380.en_US
dc.identifier.citedreferenceTurner CH. 1999. Site‐specific skeletal effects of exercise: importance of interstitial fluid pressure. Bone 24: 161 – 162.en_US
dc.identifier.citedreferenceUral A, Vashishth D. 2006. Interactions between microstructural and geometrical adaptation in human cortical bone. J Orthop Res 24: 1489 – 1498.en_US
dc.identifier.citedreferencevan Oers RF, Ruimerman R, Tanck E, Hilbers PA, Huiskes R. 2008a. A unified theory for osteonal and hemi‐osteonal remodeling. Bone 42: 250 – 259.en_US
dc.identifier.citedreferencevan Oers RF, Ruimerman R, van Rietbergen B, Hilbers PA, Huiskes R. 2008b. Relating osteon diameter to strain. Bone 43: 476 – 482.en_US
dc.identifier.citedreferenceVerborgt O, Gibson GJ, Schaffler MB. 2000. Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J Bone Miner Res 15: 60 – 67.en_US
dc.identifier.citedreferenceWalker RA, Lovejoy CO, Meindl RS. 1994. Histomorphological and geometric properties of human femoral cortex in individuals over 50: implications for histomorphological determination of age‐at‐death. Am J Hum Biol 6: 659 – 667.en_US
dc.identifier.citedreferenceZebaze RM, Ghasem‐Zadeh A, Bohte A, Iuliano‐Burns S, Mirams M, Price RI, Mackie EJ, Seeman E. 2010. Intracortical remodelling and porosity in the distal radius and post‐mortem femurs of women: a cross‐sectional study. Lancet 375: 1729 – 1736.en_US
dc.identifier.citedreferenceAlexander RM. 1998. Muscle geometry. J Physiol 512 ( Pt 2 ): 315.en_US
dc.identifier.citedreferenceBell KL, Loveridge N, Reeve J, Thomas CD, Feik SA, Clement JG. 2001. Super‐osteons (remodeling clusters) in the cortex of the femoral shaft: influence of age and gender. Anat Rec 264: 378 – 386.en_US
dc.identifier.citedreferenceBjornerem A, Bui QM, Ghasem‐Zadeh A, Hopper JL, Zebaze R, Seeman E. 2013. Fracture risk and height: an association partly accounted for by cortical porosity of relatively thinner cortices. J Bone Miner Res 28: 2017 – 2026.en_US
dc.identifier.citedreferenceBouvier M, Hylander WL. 1981. Effect of bone strain on cortical bone structure in macaques (Macaca mulatta). J Morphol 167: 1 – 12.en_US
dc.identifier.citedreferenceBritz HM, Thomas CD, Clement JG, Cooper DM. 2009. The relation of femoral osteon geometry to age, sex, height and weight. Bone 45: 77 – 83.en_US
dc.identifier.citedreferenceBurr DB, Milgrom C, Boyd RD, Higgins WL, Robin G, Radin EL. 1990. Experimental stress fractures of the tibia. Biological and mechanical aetiology in rabbits. J Bone Joint Surg Br 72: 370 – 375.en_US
dc.identifier.citedreferenceCho H, Stout SD, Bishop TA. 2006. Cortical bone remodeling rates in a sample of African American and European American descent groups from the American Midwest: comparisons of age and sex in ribs. Am J Phys Anthropol 130: 214 – 226.en_US
dc.identifier.citedreferenceCourtland H‐W, Nasser P, Goldstone AB, Spevak L, Boskey AL, Jepsen KJ. 2008. FTIRI microspectroscopy and micromechanical testing reveal intra‐species variation in mouse bone mineral composition and matrix maturity. Calcif Tissue Int 83: 342 – 353.en_US
dc.identifier.citedreferenceCurrey JD. 1964. Some effects of ageing in human Haversian systems. J Anat 98: 69 – 75.en_US
dc.identifier.citedreferenceCurrey JD. 1979. Mechanical properties of bone tissues with greatly differing functions. J Biomech 12: 313 – 319.en_US
dc.identifier.citedreferenceCurrey JD, Alexander RM. 1985. The thickness of the walls of tubular bones. J Zool London 206: 453 – 468.en_US
dc.identifier.citedreferenceDellanini L, Hawkins D, Martin RB, Stover S. 2003. An investigation of the interactions between lower‐limb bone morphology, limb inertial properties and limb dynamics. J Biomech 36: 913 – 919.en_US
dc.identifier.citedreferenceEkenman I, Halvorsen K, Westblad P, Fellander‐Tsai L, Rolf C. 1998. Local bone deformation at two predominant sites for stress fractures of the tibia: an in vivo study. Foot Ankle Int 19: 479 – 484.en_US
dc.identifier.citedreferenceEnlow DH. 1962. A study of the post‐natal growth and remodeling of bone. Am J Anat 110: 79 – 101.en_US
dc.identifier.citedreferenceEnlow DH. 1976. The remodeling of bone. Yearbook Phys Anthropol 20: 19 – 34.en_US
dc.identifier.citedreferenceEpelboym Y, Gendron RN, Mayer J, Fusco J, Nasser P, Gross G, Ghillani R, Jepsen KJ. 2012. The inter‐individual variation in femoral neck width is associated with the acquisition of predictable sets of morphological and tissue‐quality traits and differential bone loss patterns. J Bone Miner Res 27: 1501 – 1510.en_US
dc.identifier.citedreferenceEpker BN, Frost HM. 1966. Periosteal appositional bone growth from age two to age seventy in man. Anat Rec 154: 573 – 578.en_US
dc.identifier.citedreferenceEricksen MF. 1980. Patterns of microscopic bone remodeling in three aboriginal American populations. The Hague: Houton.en_US
dc.identifier.citedreferenceEriksen EF, Steiniche T, Mosekilde L, Melsen F. 1989. Histomorphometric analysis of bone in metabolic bone disease. Endocrinol Metab Clin North Am 18: 919 – 954.en_US
dc.identifier.citedreferenceFeik SA, Thomas CD, Clement JG. 1997. Age‐related changes in cortical porosity of the midshaft of the human femur. J Anat 191 ( Pt 3 ): 407 – 416.en_US
dc.identifier.citedreferenceFrost HM. 1969. Tetracycline‐based histological analysis of bone remodeling. Calcif Tissue Res 3: 211 – 237.en_US
dc.identifier.citedreferenceFrost HM. 1987. Bone "mass" and the "mechanostat": a proposal. Anat Rec 219: 1 – 9.en_US
dc.identifier.citedreferenceGoldman HM, Bromage TG, Boyde A, Thomas CD, Clement JG. 2003a. Intrapopulation variability in mineralization density at the human femoral mid‐shaft. J Anat 203: 243 – 255.en_US
dc.identifier.citedreferenceGoldman HM, Bromage TG, Thomas CD, Clement JG. 2003b. Preferred collagen fiber orientation in the human mid‐shaft femur. Anat Rec 272A: 434 – 445.en_US
dc.identifier.citedreferenceGoldman HM, McFarlin SC, Cooper DM, Thomas CD, Clement JG. 2009. Ontogenetic patterning of cortical bone microstructure and geometry at the human mid‐shaft femur. Anat Rec (Hoboken) 292: 48 – 64.en_US
dc.identifier.citedreferenceGoldman HM, Thomas CD, Clement JG, Bromage TG. 2005. Relationships among microstructural properties of bone at the human midshaft femur. J Anat 206: 127 – 139.en_US
dc.identifier.citedreferenceHamrick MW, Skedros JG, Pennington C, McNeil PL. 2006. Increased osteogenic response to exercise in metaphyseal versus diaphyseal cortical bone. J Musculoskelet Neuronal Interact 6: 258 – 263.en_US
dc.identifier.citedreferenceHernandez CJ. 2008. How can bone turnover modify bone strength independent of bone mass? Bone 42: 1014 – 1020.en_US
dc.identifier.citedreferenceHildebrand M, Goslow G. 1998. Analysis of Vertebrate Structure. 5th ed. New York: Wiley.en_US
dc.identifier.citedreferenceIwamoto J, Yeh JK, Aloia JF. 1999. Differential effect of treadmill exercise on three cancellous bone sites in the young growing rat. Bone 24: 163 – 169.en_US
dc.identifier.citedreferenceIwaniec UT, Crenshaw TD. 1998. Distribution of mineralization indices of modeling and remodeling over eight months in middiaphyseal cross sections of femurs from adult swine. Anat Rec 250: 136 – 145.en_US
dc.identifier.citedreferenceJepsen KJ, Centi A, Duarte GF, Galloway K, Goldman H, Hampson N, Lappe JM, Cullen DM, Greeves J, Izard R, Nindl BC, Kraemer WJ, Negus CH, Evans RK. 2011. Biological constraints that limit compensation of a common skeletal trait variant lead to inequivalence of tibial function among healthy young adults. J Bone Miner Res 26: 2872 – 2875.en_US
dc.identifier.citedreferenceJepsen KJ, Evans R, Negus C, Gagnier JJ, Centi A, Erlich T, Hadid A, Yanovich R, Moran DS. 2013. Variation in tibial functionality and fracture susceptibility among healthy, young adults arises from the acquisition of biologically distinct sets of traits. J Bone Miner Res 28: 1290 – 1300.en_US
dc.identifier.citedreferenceJepsen KJ, Hu B, Tommasini SM, Courtland H‐W, Price C, Terranova CJ, Nadeau JH. 2007. Genetic randomization reveals functional relationships among morphologic and tissue‐quality traits that contribute to bone strength and fragility. Mamm Genome 18: 492 – 507.en_US
dc.identifier.citedreferenceJowsey J. 1966. Studies of Haversian systems in man and some animals. J Anat 100: 857 – 864.en_US
dc.identifier.citedreferenceKennedy OD, Herman BC, Laudier DM, Majeska RJ, Sun HB, Schaffler MB. 2012. Activation of resorption in fatigue‐loaded bone involves both apoptosis and active pro‐osteoclastogenic signaling by distinct osteocyte populations. Bone 50: 1115 – 1122.en_US
dc.identifier.citedreferenceKerley ER. 1965. The microscopic determination of age in human bone. Am J Phys Anthropol 23: 149 – 163.en_US
dc.identifier.citedreferenceLazenby R. 1986. Porosity‐geometry interaction in the conservation of bone strength. J Biomech 19: 257 – 258.en_US
dc.identifier.citedreferenceLieberman DE, Pearson OM, Polk JD, Demes B, Crompton AW. 2003. Optimization of bone growth and remodeling in response to loading in tapered mammalian limbs. J Exp Biol 206: 3125 – 3138.en_US
dc.identifier.citedreferenceMain RP. 2007. Ontogenetic relationships between in vivo strain environment, bone histomorphometry and growth in the goat radius. J Anat 210: 272 – 293.en_US
dc.identifier.citedreferenceMartin RB, Pickett JC, Zinaich S. 1980. Studies of skeletal remodeling in aging men. Clin Orthop Relat Res: 268 – 282.en_US
dc.identifier.citedreferenceMason MW, Skedros JG, Bloebaum RD. 1995. Evidence of strain‐mode‐related cortical adaptation in the diaphysis of the horse radius. Bone 17: 229 – 237.en_US
dc.identifier.citedreferenceMcFarlin SC, Terranova CJ, Zihlman AL, Enlow DH, Bromage TG. 2008. Regional variability in secondary remodeling within long bone cortices of catarrhine primates: the influence of bone growth history. J Anat 213: 308 – 324.en_US
dc.identifier.citedreferenceMeunier PJ, Boivin G. 1997. Bone mineral density reflects bone mass but also the degree of mineralization of bone: therapeutic implications. Bone 21: 373 – 377.en_US
dc.identifier.citedreferenceMilgrom C, Giladi M, Simkin A, Rand N, Kedem R, Kashtan H, Stein M, Gomori M. 1989. The area moment of inertia of the tibia: a risk factor for stress fractures. J Biomech 22: 1243 – 1248.en_US
dc.identifier.citedreferenceMosekilde L. 2008. Primary hyperparathyroidism and the skeleton. Clin Endocrinol 69: 1 – 19.en_US
dc.identifier.citedreferencePearson OM, Lieberman DE. 2004. The aging of Wolff's "law": ontogeny and responses to mechanical loading in cortical bone. Am J Phys Anthropol Suppl 39: 63 – 99.en_US
dc.identifier.citedreferencePfeiffer S. 1980. Age changes in the external dimensions of adult bone. Am J Phys Anthropol 52: 529 – 532.en_US
dc.identifier.citedreferencePfeiffer S, Lazenby R, Chiang J. 1995. Brief communication: cortical remodeling data are affected by sampling location. Am J Phys Anthropol 96: 89 – 92.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.