Show simple item record

Cranial neural crest cell contribution to craniofacial formation, pathology, and future directions in tissue engineering

dc.contributor.authorSnider, Taylor Nicholasen_US
dc.contributor.authorMishina, Yujien_US
dc.date.accessioned2014-10-07T16:09:28Z
dc.date.availableWITHHELD_12_MONTHSen_US
dc.date.available2014-10-07T16:09:28Z
dc.date.issued2014-09en_US
dc.identifier.citationSnider, Taylor Nicholas; Mishina, Yuji (2014). "Cranial neural crest cell contribution to craniofacial formation, pathology, and future directions in tissue engineering." Birth Defects Research Part C: Embryo Today: Reviews 102(3): 324-332.en_US
dc.identifier.issn1542-975Xen_US
dc.identifier.issn1542-9768en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108634
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherCambridge University Pressen_US
dc.subject.otherCraniofacial Abnormalityen_US
dc.subject.otherCranial Neural Crest Cellen_US
dc.subject.otherGene Regulatory Networksen_US
dc.subject.otherTissue Engineeringen_US
dc.titleCranial neural crest cell contribution to craniofacial formation, pathology, and future directions in tissue engineeringen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelObstetrics and Gynecologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108634/1/bdrc21075.pdf
dc.identifier.doi10.1002/bdrc.21075en_US
dc.identifier.sourceBirth Defects Research Part C: Embryo Today: Reviewsen_US
dc.identifier.citedreferenceReardon W, Winter RM, Rutland P, et al. 1994. Mutations in the fibroblast growth factor receptor 2 gene cause Crouzon syndrome. Nat Genet 8: 98 – 103.en_US
dc.identifier.citedreferencePelaez D, Huang CY, Cheung HS. 2013. Isolation of pluripotent neural crest‐derived stem cells from adult human tissues by connexin‐43 enrichment. Stem Cells Dev 22: 2906 – 2914.en_US
dc.identifier.citedreferencePerez‐Alcala S, Nieto MA, Barbas JA. 2004. LSox5 regulates RhoB expression in the neural tube and promotes generation of the neural crest. Development 131: 4455 – 4465.en_US
dc.identifier.citedreferencePingault V, Ente D, Dastot‐Le Moal F, et al. 2010. Review and update of mutations causing Waardenburg syndrome. Hum Mutat 31: 391 – 406.en_US
dc.identifier.citedreferenceRinon A, Molchadsky A, Nathan E, et al. 2011. p53 coordinates cranial neural crest cell growth and epithelial‐mesenchymal transition/delamination processes. Development 138: 1827 – 1838.en_US
dc.identifier.citedreferenceRogers CD, Saxena A, Bronner ME. 2013. Sip1 mediates an E‐cadherin‐to‐N‐cadherin switch during cranial neural crest EMT. J Cell Biol 203: 835 – 847.en_US
dc.identifier.citedreferenceRoscioli T, Elakis G, Cox TC, et al. 2013. Genotype and clinical care correlations in craniosynostosis: findings from a cohort of 630 Australian and New Zealand patients. Am J Med Genet C Semin Med Genet 163C: 259 – 270.en_US
dc.identifier.citedreferenceSanger C, David L, Argenta L. 2014. Latest trends in minimally invasive synostosis surgery: a review. Curr Opin Otolaryngol Head Neck Surg 22: 316 – 321.en_US
dc.identifier.citedreferenceSantagati F, Rijli FM. 2003. Cranial neural crest and the building of the vertebrate head. Nat Rev Neurosci 4: 806 – 818.en_US
dc.identifier.citedreferenceShprintzen RJ, Goldberg RB, Lewin ML, et al. 1978. A new syndrome involving cleft palate, cardiac anomalies, typical facies, and learning disabilities: velo‐cardio‐facial syndrome. Cleft Palate J 15: 56 – 62.en_US
dc.identifier.citedreferenceSimoes‐Costa M, Tan‐Cabugao J, Antoshechkin I, et al. 2014. Transcriptome analysis reveals novel players in the cranial neural crest gene regulatory network. Genome Res 24: 281 – 290.en_US
dc.identifier.citedreferenceSouthard‐Smith EM, Angrist M, Ellison JS, et al. 1999. The Sox10(Dom) mouse: modeling the genetic variation of Waardenburg‐Shah (WS4) syndrome. Genome Res 9: 215 – 225.en_US
dc.identifier.citedreferenceTakahashi K, Nuckolls GH, Takahashi I, et al. 2001. Msx2 is a repressor of chondrogenic differentiation in migratory cranial neural crest cells. Dev Dyn 222: 252 – 262.en_US
dc.identifier.citedreferenceTheveneau E, Mayor R. 2012. Neural crest migration: interplay between chemorepellents, chemoattractants, contact inhibition, epithelial‐mesenchymal transition, and collective cell migration. Wiley Interdiscip Rev Dev Biol 1: 435 – 445.en_US
dc.identifier.citedreferenceTheveneau E, Duband JL, Altabef M. 2007. Ets‐1 confers cranial features on neural crest delamination. PLoS One 2: e1142.en_US
dc.identifier.citedreferenceTrainor P. 2013. Neural crest cells: evolution, development and disease. In: Trainor P, editor. London, UK: Academic Press. p. 488.en_US
dc.identifier.citedreferenceWang Y, Cox MK, Coricor G, et al. 2013. Inactivation of Tgfbr2 in Osterix‐Cre expressing dental mesenchyme disrupts molar root formation. Dev Biol 382: 27 – 37.en_US
dc.identifier.citedreferenceWinograd J, Reilly MP, Roe R, et al. 1997. Perinatal lethality and multiple craniofacial malformations in MSX2 transgenic mice. Hum Mol Genet 6: 369 – 379.en_US
dc.identifier.citedreferenceXu X, Chen C, Akiyama K, et al. 2013. Gingivae contain neural‐crest‐ and mesoderm‐derived mesenchymal stem cells. J Dent Res 92: 825 – 832.en_US
dc.identifier.citedreferenceYoung NM, Hu D, Lainoff AJ, et al. 2014. Embryonic bauplans and the developmental origins of facial diversity and constraint. Development 141: 1059 – 1063.en_US
dc.identifier.citedreferenceAchilleos A, Trainor PA. 2012. Neural crest stem cells: discovery, properties and potential for therapy. Cell Res 22: 288 – 304.en_US
dc.identifier.citedreferenceAshokan CS, Sreenivasan A, Saraswathy GK. 2014. Goldenhar syndrome–review with case series. J Clin Diagn Res 8: ZD17 – ZD19.en_US
dc.identifier.citedreferenceBassett AS, McDonald‐McGinn DM, Devriendt K, et al. 2011. Practical guidelines for managing patients with 22q11.2 deletion syndrome. J Pediatr 159: 332 – 339.en_US
dc.identifier.citedreferenceBoutros S, Shetye PR, Ghali S, et al. 2007. Morphology and growth of the mandible in Crouzon, Apert, and Pfeiffer syndromes. J Craniofac Surg 18: 146 – 150.en_US
dc.identifier.citedreferenceBurstyn‐Cohen T, Stanleigh J, Sela‐Donenfeld D, Kalcheim C. 2004. Canonical Wnt activity regulates trunk neural crest delamination linking BMP/noggin signaling with G1/S transition. Development 131: 5327 – 5339.en_US
dc.identifier.citedreferenceCooper GM, Durham EL, Cray JJ Jr, et al. 2012. Tissue interactions between craniosynostotic dura mater and bone. J Craniofac Surg 23: 919 – 924.en_US
dc.identifier.citedreferenceCreuzet S, Schuler B, Couly G, Le Douarin NM. 2004. Reciprocal relationships between Fgf8 and neural crest cells in facial and forebrain development. Proc Natl Acad Sci USA 101: 4843 – 4847.en_US
dc.identifier.citedreferenceDixon J, Jones NC, Sandell LL, et al. 2006. Tcof1/Treacle is required for neural crest cell formation and proliferation deficiencies that cause craniofacial abnormalities. Proc Natl Acad Sci USA 103: 13403 – 13408.en_US
dc.identifier.citedreferenceDudas M, Kim J, Li WY, et al. 2006. Epithelial and ectomesenchymal role of the type I TGF‐beta receptor ALK5 during facial morphogenesis and palatal fusion. Dev Biol 296: 298 – 314.en_US
dc.identifier.citedreferenceEzaldein HH, Metzler P, Persing JA, Steinbacher DM. 2014. Three‐dimensional orbital dysmorphology in metopic synostosis. J Plast Reconstr Aesthet Surg 67: 900 – 905.en_US
dc.identifier.citedreferenceGraham A, Francis‐West P, Brickell P, Lumsden A. 1994. The signalling molecule BMP4 mediates apoptosis in the rhombencephalic neural crest. Nature 372: 684 – 686.en_US
dc.identifier.citedreferenceGreen SA, Bronner ME. 2014. The lamprey: a jawless vertebrate model system for examining origin of the neural crest and other vertebrate traits. Differentiation 87: 44 – 51.en_US
dc.identifier.citedreferenceHou L, Pavan WJ. 2008. Transcriptional and signaling regulation in neural crest stem cell‐derived melanocyte development: do all roads lead to Mitf? Cell Res 18: 1163 – 1176.en_US
dc.identifier.citedreferenceHsu PD, Lander ES, Zhang F. 2014. Development and applications of CRISPR‐Cas9 for genome engineering. Cell 157: 1262 – 1278.en_US
dc.identifier.citedreferenceHuang CY, Pelaez D, Dominguez‐Bendala J, et al. 2009. Plasticity of stem cells derived from adult periodontal ligament. Regen Med 4: 809 – 821.en_US
dc.identifier.citedreferenceIbrahimi OA, Zhang F, Eliseenkova AV, et al. 2004. Proline to arginine mutations in FGF receptors 1 and 3 result in Pfeiffer and Muenke craniosynostosis syndromes through enhancement of FGF binding affinity. Hum Mol Genet 13: 69 – 78.en_US
dc.identifier.citedreferenceIshii M, Arias AC, Liu L, et al. 2012. A stable cranial neural crest cell line from mouse. Stem Cells Dev 21: 3069 – 3080.en_US
dc.identifier.citedreferenceIto Y, Yeo JY, Chytil A, et al. 2003. Conditional inactivation of Tgfbr2 in cranial neural crest causes cleft palate and calvaria defects. Development 130: 5269 – 5280.en_US
dc.identifier.citedreferenceJabs EW, Li X, Scott AF, et al. 1994. Jackson‐Weiss and Crouzon syndromes are allelic with mutations in fibroblast growth factor receptor 2. Nat Genet 8: 275 – 279.en_US
dc.identifier.citedreferenceJones NC, Lynn ML, Gaudenz K, et al. 2008. Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function. Nat Med 14: 125 – 133.en_US
dc.identifier.citedreferenceKaartinen V, Voncken JW, Shuler C, et al. 1995. Abnormal lung development and cleft palate in mice lacking TGF‐beta 3 indicates defects of epithelial‐mesenchymal interaction. Nat Genet 11: 415 – 421.en_US
dc.identifier.citedreferenceLalani SR, Safiullah AM, Fernbach SD, et al. 2006. Spectrum of CHD7 mutations in 110 individuals with CHARGE syndrome and genotype‐phenotype correlation. Am J Hum Genet 78: 303 – 314.en_US
dc.identifier.citedreferenceLe Douarin N. 1973. A biological cell labeling technique and its use in expermental embryology. Dev Biol 30: 217 – 222.en_US
dc.identifier.citedreferenceLe Douarin N, Kalcheim C. 1999. The neural crest. Cambridge, UK: Cambridge University Press.en_US
dc.identifier.citedreferenceLoeys BL, Chen J, Neptune ER, et al. 2005. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet 37: 275 – 281.en_US
dc.identifier.citedreferenceMatera I, Watkins‐Chow DE, Loftus SK, et al. 2008. A sensitized mutagenesis screen identifies Gli3 as a modifier of Sox10 neurocristopathy. Hum Mol Genet 17: 2118 – 2131.en_US
dc.identifier.citedreferenceMinoux M, Kratochwil CF, Ducret S, et al. 2013. Mouse Hoxa2 mutations provide a model for microtia and auricle duplication. Development 140: 4386 – 4397.en_US
dc.identifier.citedreferenceMishina Y, Snider TN. 2014. Neural crest cell signaling pathways critical to cranial bone development and pathology. Exp Cell Res 325: 138 – 147.en_US
dc.identifier.citedreferenceMiura M, Gronthos S, Zhao M, et al. 2003. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 100: 5807 – 5812.en_US
dc.identifier.citedreferenceNagashima H, Shibata M, Taniguchi M, et al. 2014. Comparative study of the shell development of hard‐ and soft‐shelled turtles. J Anat 225: 60 – 70.en_US
dc.identifier.citedreferenceNoden DM, Trainor PA. 2005. Relations and interactions between cranial mesoderm and neural crest populations. J Anat 207: 575 – 601.en_US
dc.identifier.citedreferencePapangeli I, Scambler P. 2013. The 22q11 deletion: DiGeorge and velocardiofacial syndromes and the role of TBX1. Wiley Interdiscip Rev Dev Biol 2: 393 – 403.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.