Show simple item record

Storm time response of the midlatitude thermosphere: Observations from a network of Fabry‐Perot interferometers

dc.contributor.authorMakela, Jonathan J.en_US
dc.contributor.authorHarding, Brian J.en_US
dc.contributor.authorMeriwether, John W.en_US
dc.contributor.authorMesquita, Rafaelen_US
dc.contributor.authorSanders, Samuelen_US
dc.contributor.authorRidley, Aaron J.en_US
dc.contributor.authorCastellez, Michael W.en_US
dc.contributor.authorCiocca, Marcoen_US
dc.contributor.authorEarle, Gregory D.en_US
dc.contributor.authorFrissell, Nathaniel A.en_US
dc.contributor.authorHampton, Donald L.en_US
dc.contributor.authorGerrard, Andrew J.en_US
dc.contributor.authorNoto, Johnen_US
dc.contributor.authorMartinis, Carlos R.en_US
dc.date.accessioned2014-10-07T16:09:32Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2014-10-07T16:09:32Z
dc.date.issued2014-08en_US
dc.identifier.citationMakela, Jonathan J.; Harding, Brian J.; Meriwether, John W.; Mesquita, Rafael; Sanders, Samuel; Ridley, Aaron J.; Castellez, Michael W.; Ciocca, Marco; Earle, Gregory D.; Frissell, Nathaniel A.; Hampton, Donald L.; Gerrard, Andrew J.; Noto, John; Martinis, Carlos R. (2014). "Storm time response of the midlatitude thermosphere: Observations from a network of Fabry‐Perot interferometers." Journal of Geophysical Research: Space Physics 119(8): 6758-6773.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108644
dc.description.abstractObservations of thermospheric neutral winds and temperatures obtained during a geomagnetic storm on 2 October 2013 from a network of six Fabry‐Perot interferometers (FPIs) deployed in the Midwest United States are presented. Coincident with the commencement of the storm, the apparent horizontal wind is observed to surge westward and southward (toward the equator). Simultaneous to this surge in the apparent horizontal winds, an apparent downward wind of approximately 100 m/s lasting for 6 h is observed. The apparent neutral temperature is observed to increase by approximately 400 K over all of the sites. Observations from an all‐sky imaging system operated at the Millstone Hill observatory indicate the presence of a stable auroral red (SAR) arc and diffuse red aurora during this time. We suggest that the large sustained apparent downward winds arise from contamination of the spectral profile of the nominal thermospheric 630.0 nm emission by 630.0 nm emission from a different (nonthermospheric) source. Modeling demonstrates that the effect of an additional population of 630.0 nm photons, with a distinct velocity and temperature distribution, introduces an apparent Doppler shift when the combined emissions from the two sources are analyzed as a single population. Thus, the apparent Doppler shifts should not be interpreted as the bulk motion of the thermosphere, calling into question results from previous FPI studies of midlatitude storm time thermospheric winds. One possible source of contamination could be fast O related to the infusion of low‐energy O + ions from the magnetosphere. The presence of low‐energy O + is supported by observations made by the Helium, Oxygen, Proton, and Electron spectrometer instruments on the twin Van Allen Probes spacecraft, which show an influx of low‐energy ions during this period. These results emphasize the importance of distributed networks of instruments in understanding the complex dynamics that occur in the upper atmosphere during disturbed conditions. Key Points Coordinated observations made by five Fabry‐Perot interferometers are shown An unexpected strong and sustained vertical thermospheric wind is observed The vertical wind is interpreted to be due to spectral contaminationen_US
dc.publisherAGUen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherGeomagnetic Storm Responseen_US
dc.subject.otherThermospheric Windsen_US
dc.titleStorm time response of the midlatitude thermosphere: Observations from a network of Fabry‐Perot interferometersen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108644/1/jgra51207.pdf
dc.identifier.doi10.1002/2014JA019832en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceSharp, R. D., R. G. Johnson, and E. G. Shelley ( 1976a ), The morphology of energetic O + ions during two magnetic storms: Temporal variations, J. Geophys. Res., 81 ( 19 ), 3283 – 3291, doi: 10.1029/JA081i019p03283.en_US
dc.identifier.citedreferenceKeika, K., L. M. Kistler, and P. C. Brandt ( 2013 ), Energization of O + ions in the Earth's inner magnetosphere and the effects on ring current buildup: A review of previous observations and possible mechanisms, J. Geophys. Res. Space Physics, 118, 4441 – 4464, doi: 10.1002/jgra.50371.en_US
dc.identifier.citedreferenceKerr, R. B. ( 2014 ), Redline Instrument Description, retrieved from http://neutralwinds.com/redlinedescribe.html.en_US
dc.identifier.citedreferenceKharchenko, V., A. Dalgarno, and J. L. Fox ( 2005 ), Thermospheric distribution of fast O(1D) atoms, J. Geophys. Res., 110, A12305, doi: 10.1029/2005JA011232.en_US
dc.identifier.citedreferenceLarsen, M. F., and J. W. Meriwether ( 2012 ), Vertical winds in the thermosphere, J. Geophys. Res., 117, A09319, doi: 10.1029/2012JA017843.en_US
dc.identifier.citedreferenceLink, R., and L. L. Cogger ( 1988 ), A reexamination of the O I 6300‐A nightglow, J. Geophys. Res., 93 ( A9 ), 9883 – 9892, doi: 10.1029/JA093iA09p09883.en_US
dc.identifier.citedreferenceMakela, J. J., J. W. Meriwether, A. J. Ridley, M. Ciocca, and M. W. Castellez ( 2012 ), Large‐scale measurements of thermospheric dynamics with a multisite Fabry‐Perot interferometer network: Overview of plans and results from midlatitude measurements, Int. J. Geophys., 2012 ( 3 ), 1 – 10, doi: 10.1155/2012/872140.en_US
dc.identifier.citedreferenceMeriwether, J. ( 2008 ), Thermospheric dynamics at low and mid‐latitudes during magnetic storm activity, Geophys. Monogr. Ser., 181, 201 – 219.en_US
dc.identifier.citedreferenceNicolls, M. J., S. L. Vadas, J. W. Meriwether, M. G. Conde, and D. Hampton ( 2012 ), The phases and amplitudes of gravity waves propagating and dissipating in the thermosphere: Application to measurements over Alaska, J. Geophys. Res., 117, A05323, doi: 10.1029/2012JA017542.en_US
dc.identifier.citedreferencePrölss, G. W. ( 1997 ), Magnetic storm associated perturbations of the upper atmosphere, Geophys. Monogr. Ser., 98, 227 – 241.en_US
dc.identifier.citedreferenceRees, D., R. Smith, P. Charleton, F. McCormac, N. Lloyd, and A. Steen ( 1984 ), The generation of vertical thermospheric winds and gravity waves at auroral latitudes—I. Observations of vertical winds, Planet. Space Sci., 32 ( 6 ), 667 – 684, doi: 10.1016/0032‐0633(84)90092‐8.en_US
dc.identifier.citedreferenceRishbeth, H., T. J. Fuller‐Rowell, and A. S. Rodger ( 1987 ), F‐layer storms and thermospheric composition, Phys. Scr., 36 ( 2 ), 327 – 336, doi: 10.1088/0031‐8949/36/2/024.en_US
dc.identifier.citedreferenceSchmitt, G., V. Abreu, and P. Hays ( 1981 ), Non‐thermal O(1D) produced by dissociative recombination of O 2 +: A theoretical model and observational results, Planet. Space Sci., 29 ( 10 ), 1095 – 1099, doi: 10.1016/0032‐0633(81)90008‐8.en_US
dc.identifier.citedreferenceSharp, R. D., R. G. Johnson, and E. G. Shelley ( 1976b ), The morphology of energetic O + ions during two magnetic storms: Latitudinal variations, J. Geophys. Res., 81 ( 19 ), 3292 – 3298, doi: 10.1029/JA081i019p03292.en_US
dc.identifier.citedreferenceShelley, E. G., R. G. Johnson, and R. D. Sharp ( 1972 ), Satellite observations of energetic heavy ions during a geomagnetic storm, J. Geophys. Res., 77 ( 31 ), 6104 – 6110, doi: 10.1029/JA077i031p06104.en_US
dc.identifier.citedreferenceShematovich, V., J.‐C. Gérard, D. V. Bisikalo, and B. Hubert ( 1999 ), Thermalization of O(1D) atoms in the thermosphere, J. Geophys. Res., 104 ( A3 ), 4287 – 4295, doi: 10.1029/1998JA900154.en_US
dc.identifier.citedreferenceSipler, D., M. Biondi, and M. Zipf ( 1995 ), Vertical winds in the midlatitude thermosphere from Fabry‐Perot interferometer measurements, J. Atmos. Terr. Phys., 57 ( 6 ), 621 – 629, doi: 10.1016/0021‐9169(94)00102‐T.en_US
dc.identifier.citedreferenceSipler, D. P., and M. A. Biondi ( 1979 ), Midlatitude F region neutral winds and temperatures during the geomagnetic storm of March 26, 1976, J. Geophys. Res., 84 ( A1 ), 37 – 40.en_US
dc.identifier.citedreferenceSipler, D. P., and M. A. Biondi ( 2003 ), Simulation of hot oxygen effects on ground‐based Fabry‐Perot determinations of thermospheric temperatures, J. Geophys. Res., 108 ( A6 ), 1260, doi: 10.1029/2003JA009911.en_US
dc.identifier.citedreferenceSmith, R., and G. Hernandez ( 1995 ), Vertical winds in the thermosphere within the polar cap, J. Atmos. Terr. Phys., 57 ( 6 ), 611 – 620, doi: 10.1016/0021‐9169(94)00101‐S.en_US
dc.identifier.citedreferenceSmith, R. W. ( 1998 ), Vertical winds: A tutorial, J. Atmos. Sol. Terr. Phys., 60 ( 14 ), 1425 – 1434, doi: 10.1016/S1364‐6826(98)00058‐3.en_US
dc.identifier.citedreferenceSpace Weather Prediction Center ( 2013 ), Space Weather Anonymous FTP Server, retrieved from http://www.swpc.noaa.gov/ftpdir/warehouse/2013/2013_RSGA.tar.gz.en_US
dc.identifier.citedreferenceSpencer, N. W., R. F. Theis, L. E. Wharton, and G. R. Carignan ( 1976 ), Local vertical motions and kinetic temperature from AE‐C as evidence for aurora‐induced gravity waves, Geophys. Res. Lett., 3 ( 6 ), 313 – 316, doi: 10.1029/GL003i006p00313.en_US
dc.identifier.citedreferenceTorr, M., and D. Torr ( 1979 ), Energetic oxygen: A direct coupling mechanism between the magnetosphere and thermosphere, Geophys. Res. Lett., 6 ( 9 ), 700 – 702.en_US
dc.identifier.citedreferenceTorr, M., D. Torr, R. Roble, and E. Ridley ( 1982 ), The dynamic response of the thermosphere to the energy influx resulting from energetic O + ions, J. Geophys. Res., 87, 5290 – 5300.en_US
dc.identifier.citedreferenceTorr, M. R., J. C. G. Walker, and D. G. Torr ( 1974 ), Escape of fast oxygen from the atmosphere during geomagnetic storms, J. Geophys. Res., 79 ( 34 ), 5267 – 5271, doi: 10.1029/JA079i034p05267.en_US
dc.identifier.citedreferenceweatherunderground.com ( 2013 ), Weather History for Blacksburg, VA, Weather Underground, retrieved from http://www.wunderground.com/history/airport/KBCB/2013/10/2/DailyHistory.html?req_city=NA&req_state=NA&req_statename=NA&MR=1.en_US
dc.identifier.citedreferenceWelling, D., and A. Ridley ( 2010 ), Exploring sources of magnetospheric plasma using multispecies MHD, J. Geophys. Res., 115, A04201, doi: 10.1029/2009JA014596.en_US
dc.identifier.citedreferenceWilson, G. R., and T. E. Moore ( 2005 ), Origins and variation of terrestrial energetic neutral atoms outflow, J. Geophys. Res., 110, A02207, doi: 10.1029/2003JA010356.en_US
dc.identifier.citedreferenceYee, Y. H., J. W. Meriwether, and P. B. Hays ( 1980 ), Detection of a corona of fast oxygen atoms during solar maximum, J. Geophys. Res., 85 ( A7 ), 3396 – 3400, doi: 10.1029/JA085iA07p03396.en_US
dc.identifier.citedreferenceYigit, E., A. J. Ridley, and M. B. Moldwin ( 2012 ), Importance of capturing heliospheric variability for studies of thermospheric vertical winds, J. Geophys. Res., 117, A07306, doi: 10.1029/2012JA017596.en_US
dc.identifier.citedreferenceHernandez, G., and R. Roble ( 1984 ), Nighttime variation of thermospheric winds and temperatures over fritz peak observatory during the geomagnetic storm of March 2, 1983, J. Geophys. Res., 89 ( A10 ), 9049 – 9056.en_US
dc.identifier.citedreferenceHickey, M. P., P. G. Richards, and D. G. Torr ( 1995 ), New sources for the hot oxygen geocorona: Solar cycle, seasonal, latitudinal, and diurnal variations, J. Geophys. Res., 100, 17,377 – 17,388, doi: 10.1029/95JA00895.en_US
dc.identifier.citedreferenceHolton, J. R. ( 1972 ), An Introduction to Dynamic Meteorology, Academic Press, New York.en_US
dc.identifier.citedreferenceHubert, B., J.‐C. Gérard, T. L. Killeen, Q. Wu, D. V. Bisikalo, and V. I. Shematovich ( 2001 ), Observation of anomalous temperatures in the daytime O(1D) 6300Å thermospheric emission: A possible signature of nonthermal atoms, J. Geophys. Res., 106 ( A7 ), 12,753 – 12,764, doi: 10.1029/2000JA900122.en_US
dc.identifier.citedreferenceAnderson, C., T. Davies, M. Conde, P. Dyson, and M. J. Kosch ( 2011 ), Spatial sampling of the thermospheric vertical wind field at auroral latitudes, J. Geophys. Res., 116, A06320, doi: 10.1029/2011JA016485.en_US
dc.identifier.citedreferenceAnderson, C., M. Conde, and M. G. McHarg ( 2012 ), Neutral thermospheric dynamics observed with two scanning Doppler imagers: 2. Vertical winds, J. Geophys. Res., 117, A03305, doi: 10.1029/2011JA017157.en_US
dc.identifier.citedreferenceBuonsanto, M. ( 1999 ), Ionospheric storms—A review, Space Sci. Rev., 88 ( 3–4 ), 563 – 601.en_US
dc.identifier.citedreferenceBurnside, R. G., F. A. Herrero, J. W. Meriwether, and J. C. G. Walker ( 1981 ), Optical observations of thermospheric dynamics at Arecibo, J. Geophys. Res., 86 ( A7 ), 5532 – 5540, doi: 10.1029/JA086iA07p05532.en_US
dc.identifier.citedreferenceDaglis, I. A., R. M. Thorne, W. Baumjohann, and S. Orsini ( 1999 ), The terrestrial ring current: Origin, formation, and decay, Rev. Geophys., 37 ( 4 ), 407 – 438, doi: 10.1029/1999RG900009.en_US
dc.identifier.citedreferenceDeng, Y., A. D. Richmond, A. J. Ridley, and H.‐L. Liu ( 2008 ), Assessment of the non‐hydrostatic effect on the upper atmosphere using a general circulation model (GCM), Geophys. Res. Lett., 35, L01104, doi: 10.1029/2007GL032182.en_US
dc.identifier.citedreferenceEarle, G., R. Davidson, R. Heelis, W. Coley, D. Weimer, J. Makela, D. Fisher, A. Gerrard, and J. Meriwether ( 2013 ), Low latitude thermospheric responses to magnetic storms, J. Geophys. Res. Space Physics, 118, 3866 – 3876, doi: 10.1002/jgra.50212.en_US
dc.identifier.citedreferenceFuller‐Rowell, T., M. Codrescu, R. Roble, and A. Richmond ( 1997 ), How does the thermosphere and ionosphere react to a geomagnetic storm? Geophys. Monogr. Ser., 98, 203 – 225.en_US
dc.identifier.citedreferenceFunsten, H., et al. ( 2013 ), Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometer for the radiation belt storm probes mission, Space Sci. Rev., 179, 423 – 484, doi: 10.1007/s11214‐013‐9968‐7.en_US
dc.identifier.citedreferenceGonzalez, W., J. Joselyn, Y. Kamide, H. Kroehl, G. Rostoker, B. Tsurutani, and V. Vasyliunas ( 1994 ), What is a geomagnetic storm? J. Geophys. Res., 99 ( A4 ), 5771 – 5792.en_US
dc.identifier.citedreferenceHampton, D. L., J. W. Meriwether, M. F. Larsen, A. J. Ridley, and M. G. Conde ( 2012 ), Sustained Vertical Thermospheric Winds in the Auroral Zone, no. SA22A‐02 in 2012 Fall Meeting, AGU, San Francisco, Calif.en_US
dc.identifier.citedreferenceHarding, B. J., T. W. Gehrels, and J. J. Makela ( 2014 ), A nonlinear regression method for estimating neutral wind and temperature from Fabry‐Perot interferometer data, Appl. Opt., 53 ( 4 ), 666 – 673, doi: 10.1364/AO.53.000666.en_US
dc.identifier.citedreferenceHays, P., and R. Roble ( 1971 ), Direct observations of thermospheric winds during geomagnetic storms, J. Geophys. Res., 76 ( 22 ), 5316 – 5321.en_US
dc.identifier.citedreferenceHernandez, G. ( 1982 ), Vertical motions of the neutral thermosphere at midlatitude, Geophys. Res. Lett., 9 ( 5 ), 555 – 557, doi: 10.1029/GL009i005p00555.en_US
dc.identifier.citedreferenceHernandez, G., and R. Roble ( 1976 ), Direct measurements of nighttime thermospheric winds and temperatures. 2. Geomagnetic storms, J. Geophys. Res., 81 ( 28 ), 5173 – 5181.en_US
dc.identifier.citedreferenceIshii, M., M. Conde, R. W. Smith, M. Krynicki, E. Sagawa, and S. Watari ( 2001 ), Vertical wind observations with two Fabry‐Perot interferometers at Poker Flat, Alaska, J. Geophys. Res., 106 ( A6 ), 10,537 – 10,551, doi: 10.1029/2000JA900148.en_US
dc.identifier.citedreferenceIshimoto, M., G. J. Romick, and C. I. Meng ( 1992 ), Energy distribution of energetic O + precipitation into the atmosphere, J. Geophys. Res., 97 ( A6 ), 8619 – 8629, doi: 10.1029/92JA00228.en_US
dc.identifier.citedreferenceIshimoto, M., G. J. Romick, and C. I. Meng ( 1994 ), Model calculation of atmospheric emission caused by energetic O + precipitation, J. Geophys. Res., 99 ( A1 ), 435 – 447, doi: 10.1029/93JA01148.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.