Show simple item record

Surface energy budget and thermal inertia at Gale Crater: Calculations from ground‐based measurements

dc.contributor.authorMartínez, G. M.en_US
dc.contributor.authorRennó, N.en_US
dc.contributor.authorFischer, E.en_US
dc.contributor.authorBorlina, C. S.en_US
dc.contributor.authorHallet, B.en_US
dc.contributor.authorTorre Juárez, M.en_US
dc.contributor.authorVasavada, A. R.en_US
dc.contributor.authorRamos, M.en_US
dc.contributor.authorHamilton, V.en_US
dc.contributor.authorGomez‐elvira, J.en_US
dc.contributor.authorHaberle, R. M.en_US
dc.date.accessioned2014-10-07T16:09:41Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2014-10-07T16:09:41Z
dc.date.issued2014-08en_US
dc.identifier.citationMartínez, G. M. ; Rennó, N. ; Fischer, E.; Borlina, C. S.; Hallet, B.; Torre Juárez, M. ; Vasavada, A. R.; Ramos, M.; Hamilton, V.; Gomez‐elvira, J. ; Haberle, R. M. (2014). "Surface energy budget and thermal inertia at Gale Crater: Calculations from groundâ based measurements." Journal of Geophysical Research: Planets 119(8): 1822-1838.en_US
dc.identifier.issn2169-9097en_US
dc.identifier.issn2169-9100en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108664
dc.description.abstractThe analysis of the surface energy budget (SEB) yields insights into soil‐atmosphere interactions and local climates, while the analysis of the thermal inertia ( I ) of shallow subsurfaces provides context for evaluating geological features. Mars orbital data have been used to determine thermal inertias at horizontal scales of ~10 4  m 2 to ~10 7  m 2 . Here we use measurements of ground temperature and atmospheric variables by Curiosity to calculate thermal inertias at Gale Crater at horizontal scales of ~10 2  m 2 . We analyze three sols representing distinct environmental conditions and soil properties, sol 82 at Rocknest (RCK), sol 112 at Point Lake (PL), and sol 139 at Yellowknife Bay (YKB). Our results indicate that the largest thermal inertia I  = 452 J m −2  K −1  s −1/2 (SI units used throughout this article) is found at YKB followed by PL with I  = 306 and RCK with I  = 295. These values are consistent with the expected thermal inertias for the types of terrain imaged by Mastcam and with previous satellite estimations at Gale Crater. We also calculate the SEB using data from measurements by Curiosity's Rover Environmental Monitoring Station and dust opacity values derived from measurements by Mastcam. The knowledge of the SEB and thermal inertia has the potential to enhance our understanding of the climate, the geology, and the habitability of Mars. Key Points We calculate the thermal inertia and surface energy budget at Gale Crater We use MSL REMS measurements for our calculationsen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherMarsen_US
dc.subject.otherREMSen_US
dc.subject.otherMSLen_US
dc.subject.otherThermal Inertiaen_US
dc.subject.otherSurface Energy Budgeten_US
dc.titleSurface energy budget and thermal inertia at Gale Crater: Calculations from ground‐based measurementsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108664/1/jgre20287.pdf
dc.identifier.doi10.1002/2014JE004618en_US
dc.identifier.sourceJournal of Geophysical Research: Planetsen_US
dc.identifier.citedreferencePiqueux, S., and P. R. Christensen ( 2009a ), A model of thermal conductivity for planetary soils: 1. Theory for unconsolidated soils, J. Geophys. Res., 114, E09005, doi: 10.1029/2008JE003308.en_US
dc.identifier.citedreferenceHébrard, E., C. Listowski, P. Coll, B. Marticorena, G. Bergametti, A. Määttänen, F. Montmessin, and F. Forget ( 2012 ), An aerodynamic roughness length map derived from extended Martian rock abundance data, J. Geophys. Res., 117, E04008, doi: 10.1029/2011JE003942.en_US
dc.identifier.citedreferenceKieffer, H. H. ( 2013 ), Thermal model for analysis of Mars infrared mapping, J. Geophys. Res. Planets, 118, 451 – 470, doi: 10.1029/2012JE004164.en_US
dc.identifier.citedreferenceKieffer, H. H., T. Martin, A. R. Peterfreund, B. M. Jakosky, E. D. Miner, and F. D. Palluconi ( 1977 ), Thermal and albedo mapping of Mars during the Viking primary mission, J. Geophys. Res., 82 ( 28 ), 4249 – 4291, doi: 10.1029/JS082i028p04249.en_US
dc.identifier.citedreferenceMäättänen, A., and H. Savijärvi ( 2004 ), Sensitivity tests with a one‐dimensional boundary‐layer Mars model, Bound.‐Lay. Meteorol., 113 ( 3 ), 305 – 320.en_US
dc.identifier.citedreferenceMartínez, G., and N. Rennó ( 2013 ), Water and brines on Mars: Current evidence and implications for MSL, Space Sci. Rev., 175, 29 – 51.en_US
dc.identifier.citedreferenceMartínez, G., F. Valero, and L. Vázquez ( 2009 ), Characterization of the Martian convective boundary layer, J. Atmos. Sci., 66 ( 7 ), 2044 – 2058.en_US
dc.identifier.citedreferenceMartínez, G., F. Valero, and L. Vázquez ( 2011 ), The TKE budget in the convective Martian planetary boundary layer, Q. J. R. Meteorol. Soc., 137 ( 661 ), 2194 – 2208.en_US
dc.identifier.citedreferenceMellon, M. T., B. M. Jakosky, H. H. Kieffer, and P. R. Christensen ( 2000 ), High‐resolution thermal inertia mapping from the Mars Global Surveyor Thermal Emission Spectrometer, Icarus, 148 ( 2 ), 437 – 455.en_US
dc.identifier.citedreferenceMellon, M. T., W. V. Boynton, W. C. Feldman, R. E. Arvidson, T. N. Titus, J. L. Bandfield, N. E. Putzig, and H. G. Sizemore ( 2008 ), A prelanding assessment of the ice‐table depth and ground ice characteristics in Martian permafrost at the Phoenix landing site, J. Geophys. Res., 113, E00A25, doi: 10.1029/2007JE003067.en_US
dc.identifier.citedreferenceMöhlmann, D. ( 2004 ), Water in the upper Martian surface at mid‐and low‐latitudes: Presence, state, and consequences, Icarus, 168 ( 2 ), 318 – 323.en_US
dc.identifier.citedreferencePelkey, S. M., and B. M. Jakosky ( 2002 ), Surficial geologic surveys of Gale crater and Melas Chasma, Mars: Integration of remote‐sensing data, Icarus, 160 ( 2 ), 228 – 257.en_US
dc.identifier.citedreferencePiqueux, S., and P. R. Christensen ( 2009b ), A model of thermal conductivity for planetary soils: 2. Theory for cemented soils, J. Geophys. Res., 114, E09006, doi: 10.1029/2008JE003309.en_US
dc.identifier.citedreferencePresley, M. A., and P. R. Christensen ( 1997 ), Thermal conductivity measurements of particulate materials 2. Results, J. Geophys. Res., 102 ( E3 ), 6551 – 6566, doi: 10.1029/96JE03303.en_US
dc.identifier.citedreferencePutzig, N. E., M. T. Mellon, K. A. Kretke, and R. E. Arvidson ( 2005 ), Global thermal inertia and surface properties of Mars from the MGS mapping mission, Icarus, 173, 325 – 341.en_US
dc.identifier.citedreferenceSavijärvi, H. ( 1995 ), Mars boundary layer modeling: Diurnal moisture cycle and soil properties at the Viking lander 1 site, Icarus, 117 ( 1 ), 120 – 127.en_US
dc.identifier.citedreferenceSavijärvi, H. ( 1999 ), A model study of the atmospheric boundary layer in the Mars Pathfinder lander conditions, Q. J. R. Meteorol. Soc., 125 ( 554 ), 483 – 493.en_US
dc.identifier.citedreferenceSavijärvi, H., and A. Määttänen ( 2010 ), Boundary‐layer simulations for the Mars Phoenix lander site, Q. J. R. Meteorol. Soc., 136 ( 651 ), 1497 – 1505.en_US
dc.identifier.citedreferenceSavijärvi, H., D. Crisp, and A.‐M. Harri ( 2005 ), Effects of CO 2 and dust on present‐day solar radiation and climate on Mars, Q. J. R. Meteorol. Soc., 131 ( 611 ), 2907 – 2922.en_US
dc.identifier.citedreferenceSebastián, E., C. Armiens, J. Gómez‐Elvira, M. P. Zorzano, J. Martinez‐Frias, B. Esteban, and M. Ramos ( 2010 ), The rover environmental monitoring station ground temperature sensor: A pyrometer for measuring ground temperature on Mars, Sensors, 10 ( 10 ), 9211 – 9231.en_US
dc.identifier.citedreferenceSinton, W., and J. Strong ( 1960 ), Radiometric observations of Mars, Astrophys. J., 131, 459 – 469.en_US
dc.identifier.citedreferenceSmith, M. ( 2004 ), Interannual variability in TES atmospheric observations of Mars during 1999‐2003, Icarus, 167 ( 1 ), 148 – 165.en_US
dc.identifier.citedreferenceSmith, M. D., M. J. Wolff, N. Spanovich, A. Ghosh, D. Banfield, P. R. Christensen, G. A. Landis, and S. W. Squyres ( 2006 ), One Martian year of atmospheric observations using MER Mini‐TES, J. Geophys. Res., 111, E12S13, doi: 10.1029/2006JE002770.en_US
dc.identifier.citedreferenceSquyres, J. W., et al. ( 2004 ), In situ evidence for an ancient aqueous environment at Meridiani Panum, Mars, Science, 306, 1709 – 1714, doi: 10.1126/science.1104559.en_US
dc.identifier.citedreferenceSullivan, R., et al. ( 2005 ), Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site, Nature, 436 ( 7047 ), 58 – 61.en_US
dc.identifier.citedreferenceSpanovich, N., M. D. Smith, P. H. Smith, M. J. Wolff, P. R. Christensen, and S. W. Squyres ( 2006 ), Surface and near‐surface atmospheric temperatures from the Mars Exploration Rover landing sites, Icarus, 180, 314 – 320.en_US
dc.identifier.citedreferenceSpiga, A., F. Forget, J.‐B. Madeleine, L. Montabone, S. R. Lewis, and E. Millour ( 2011 ), The impact of Martian mesoscale winds on surface temperature and on the determination of thermal inertia, Icarus, 212, 504 – 519.en_US
dc.identifier.citedreferenceSutton, J. L., C. B. Leovy, and J. E. Tillman ( 1978 ), Diurnal variations of the Martian surface layer meteorological parameters during the first 45 sols at two Viking sites, J. Atmos. Sci., 35 ( 12 ), 2346 – 2355.en_US
dc.identifier.citedreferenceVasavada, A. R., J. L. Bandfield, B. T. Greenhagen, P. O. Hayne, M. A. Siegler, J. P. Williams, and D. A. Paige ( 2012 ), Lunar equatorial surface temperatures and regolith properties from the Diviner Lunar Radiometer Experiment, J. Geophys. Res., 117, E00H18, doi: 10.1029/2011JE003987.en_US
dc.identifier.citedreferenceZorzano, M., and L. Vázquez ( 2006 ), Remote temperature retrieval from heating or cooling targets, Opt. Lett., 31, 1420 – 1422.en_US
dc.identifier.citedreferencePutzig, N. E., and M. T. Mellon ( 2007 ), Apparent thermal inertia and the surface heterogeneity of Mars, Icarus, 191 ( 1 ), 68 – 94.en_US
dc.identifier.citedreferenceBandfield, J. L., and W. C. Feldman ( 2008 ), Martian high latitude permafrost depth and surface cover thermal inertia distributions, J. Geophys. Res., 133, E08001, doi: 10.1029/2007JD008703.en_US
dc.identifier.citedreferenceBlake, D. F., et al. ( 2013 ), Curiosity at Gale crater, Mars: Characterization and analysis of the rocknest sand shadow, Science, 341 ( 6153 ), doi: 10.1126/science.1239505.en_US
dc.identifier.citedreferenceChristensen, P. R., et al. ( 2001 ), Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results, J. Geophys. Res., 106, 23,823 – 23,871, doi: 10.1029/2000JE001370.en_US
dc.identifier.citedreferenceChristensen, P. R., et al. ( 2004a ), Mineralogy at Meridiani Planum from the Mini‐TES experiment on the Opportunity rover, Science, 306 ( 5702 ), 1733 – 1739.en_US
dc.identifier.citedreferenceChristensen, P. R., et al. ( 2004b ), The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey mission, Space Sci. Rev., 110, 85 – 130.en_US
dc.identifier.citedreferenceCockell, C. S., and J. A. Raven ( 2004 ), Zones of photosynthetic potential on Mars and the early Earth, Icarus, 169 ( 2 ), 300 – 310.en_US
dc.identifier.citedreferenceDavy, R., J. A. Davis, P. A. Taylor, C. F. Lange, W. Weng, J. Whiteway, and H. P. Gunnlaugson ( 2010 ), Initial analysis of air temperature and related data from the Phoenix met station and their use in estimating turbulent heat fluxes, J. Geophys. Res., 115, E00E13, doi: 10.1029/2009JE003444.en_US
dc.identifier.citedreferenceEdgett, K. S., and P. R. Christensen ( 1991 ), The particle size of Martian aeolian dunes, J. Geophys. Res., 96 ( E5 ), 22,765 – 22,776, doi: 10.1029/91JE02412.en_US
dc.identifier.citedreferenceFergason, R. L., P. R. Christensen, and H. H. Kieffer ( 2006a ), High‐resolution thermal inertia derived from the Thermal Emission Imaging System (THEMIS): Thermal model and applications, J. Geophys. Res., 111, E12004, doi: 10.1029/2006JE002735.en_US
dc.identifier.citedreferenceFergason, R. L., P. R. Christensen, J. F. Bell, III, M. P. Golombek, K. E. Herkenhoff, and H. H. Kieffer ( 2006b ), Physical properties of the Mars Exploration Rover landing sites as inferred from Mini‐TES‐derived thermal inertia, J. Geophys. Res., 111, E02S21, doi: 10.1029/2005JE002583.en_US
dc.identifier.citedreferenceFergason, R., P. Christensen, M. Golombek, and T. Parker ( 2012 ), Surface properties of the Mars Science Laboratory candidate landing sites: Characterization from orbit and predictions, Space Sci. Rev., 170 ( 1–4 ), 739 – 773.en_US
dc.identifier.citedreferenceGolombek, M., et al. ( 2012 ), Selection of the Mars Science Laboratory landing site, Space Sci. Rev., 170 ( 1–4 ), 641 – 737.en_US
dc.identifier.citedreferenceGondet, B., J. Audouard, J.‐P. Bibring, Y. Langevin, F. Poulet, and R. Arvidson ( 2013 ) OMEGA/Mars Express observations of Gale crater, Lunar and Planet. Sci., 44, Abstract #2175.en_US
dc.identifier.citedreferenceGómez‐Elvira, J., et al. ( 2012 ), REMS: The environmental sensor suite for the Mars Science Laboratory rover, Space Sci. Rev., 170, 583 – 640.en_US
dc.identifier.citedreferenceGrotzinger, J., et al. ( 2012 ), Mars Science Laboratory mission and science investigation, Space Sci. Rev., 170, 5 – 56.en_US
dc.identifier.citedreferenceGrotzinger, J. P., et al. ( 2013 ), A habitable fluvio‐lacustrine environment at Yellowknife Bay, Gale Crater, Mars, Science, 342, doi: 10.1126/science.1242777.en_US
dc.identifier.citedreferenceHaberle, R. M., and B. M. Jakosky ( 1991 ), Atmospheric effects on the remote determination of thermal inertia on Mars, Icarus, 90 ( 2 ), 187 – 204.en_US
dc.identifier.citedreferenceHaberle, R. M., H. C. Houben, R. Hertenstein, and T. Herdtle ( 1993 ), A boundary‐layer model for Mars‐comparison with Viking lander and entry data, J. Atmos. Sci., 50, 1544 – 1559.en_US
dc.identifier.citedreferenceHamilton, V., et al. ( 2014 ), Observations and preliminary science results from the first 100 sols of MSL REMS ground temperature sensor measurements at Gale Crater, J. Geophys. Res. Planets, 119, 745 – 770, doi: 10.1002/2013JE004520.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.