Show simple item record

Towards a Safe Lithium–Sulfur Battery with a Flame‐Inhibiting Electrolyte and a Sulfur‐Based Composite Cathode

dc.contributor.authorWang, Jiulinen_US
dc.contributor.authorLin, Fengjiaoen_US
dc.contributor.authorJia, Haoen_US
dc.contributor.authorYang, Junen_US
dc.contributor.authorMonroe, Charles W.en_US
dc.contributor.authorNuLi, Yannaen_US
dc.date.accessioned2014-10-07T16:09:46Z
dc.date.availableWITHHELD_12_MONTHSen_US
dc.date.available2014-10-07T16:09:46Z
dc.date.issued2014-09-15en_US
dc.identifier.citationWang, Jiulin; Lin, Fengjiao; Jia, Hao; Yang, Jun; Monroe, Charles W.; NuLi, Yanna (2014). "Towards a Safe Lithium–Sulfur Battery with a Flame‐Inhibiting Electrolyte and a Sulfur‐Based Composite Cathode ." Angewandte Chemie International Edition 53(38): 10099-10104.en_US
dc.identifier.issn1433-7851en_US
dc.identifier.issn1521-3773en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108674
dc.description.abstractOf the various beyond‐lithium‐ion batteries, lithium–sulfur (Li‐S) batteries were recently reported as possibly being the closest to market. However, its theoretically high energy density makes it potentially hazardous under conditions of abuse. Therefore, addressing the safety issues of Li‐S cells is necessary before they can be used in practical applications. Here, we report a concept to build a safe and highly efficient Li‐S battery with a flame‐inhibiting electrolyte and a sulfur‐based composite cathode. The flame retardant not only makes the carbonates nonflammable but also dramatically enhances the electrochemical performance of the sulfur‐based composite cathode, without an apparent capacity decline over 750 cycles, and with a capacity greater than 800 mA h −1  g −1 (sulfur) at a rate of 10 C. Fire away : A nonflammable sulfur composite cathode has been shown to maintain extremely stable electrochemical activity over 750 cycles and exhibit a discharge capacity greater than 800 mA h −1  g −1 (sulfur) at a high rate of 10 C in a flame‐inhibiting electrolyte. The safe electrolyte was generated from a phosphite additive that participates in interfacial reactions on the cathode and accelerates Li‐ion diffusion more than tenfold.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherBatteriesen_US
dc.subject.otherElectrochemistryen_US
dc.subject.otherFlame‐Inhibiting Electrolyteen_US
dc.subject.otherLithiumen_US
dc.subject.otherSulfuren_US
dc.titleTowards a Safe Lithium–Sulfur Battery with a Flame‐Inhibiting Electrolyte and a Sulfur‐Based Composite Cathodeen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 (USA)en_US
dc.contributor.affiliationotherSchool of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108674/1/10099_ftp.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108674/2/anie_201405157_sm_miscellaneous_information.pdf
dc.identifier.doi10.1002/anie.201405157en_US
dc.identifier.sourceAngewandte Chemie International Editionen_US
dc.identifier.citedreferenceJ. L. Bredas, R. Silbey, D. S. Boudreaux, R. R. Chance, J. Am. Chem. Soc. 1983, 105, 6555 – 6559;en_US
dc.identifier.citedreferenceJ. W. Park, K. Ueno, N. Tachikawa, K. Dokko, M. Watanabe, J. Phys. Chem. C 2013, 117, 20531 – 20541.en_US
dc.identifier.citedreferenceB. B. Wu, F. Pei, Y. Wu, R. J. Mao, X. P. Ai, H. X. Yang, Y. L. Cao, J. Power Sources 2013, 227, 106 – 110.en_US
dc.identifier.citedreferenceE. P. Roth, C. J. Orendorff, Electrochem. Soc. Interface 2012, 21, 45 – 49.en_US
dc.identifier.citedreferenceJ. Zhang, G. W. H. Silcock, T. J. Shields, J. Fire Sci. 1995, 13, 141 – 161.en_US
dc.identifier.citedreferenceL. C. Yin, J. L. Wang, F. J. Lin, J. Yang, Y. N. Nuli, Energy Environ. Sci. 2012, 5, 6966 – 6972.en_US
dc.identifier.citedreferenceZ. Bashir, Carbon 1991, 29, 1081 – 1091.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceL. Shi, H. W. Liu, P. Xu, D. F. Zhao, Adv. Mater. Res. 2011, 175–176, 465 – 468;en_US
dc.identifier.citedreferenceC. Liu, S. L. Zhao, J. Tianjin Polytech. Univ. 2011, 30, 29 – 31.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceL. W. Shacklette, J. E. Toth, N. S. Murthy, R. H. Baughman, J. Electrochem. Soc. 1985, 132, 1529 – 1535.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceD. Aurbach, E. Zinigrad, H. Teller, P. Dan, J. Electrochem. Soc. 2000, 147, 1274 – 1279;en_US
dc.identifier.citedreferenceW. Xu, J. L. Wang, F. Ding, X. L. Chen, E. Nasybulin, Y. H. Zhang, J. G. Zhang, Energy Environ. Sci. 2014, 7, 513 – 537.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceH. J. Jung, J. Hassoun, J. B. Park, Y. K. Sun, B. Scrosati, Nat. Chem. 2012, 4, 579 – 585;en_US
dc.identifier.citedreferenceS. R. Das, S. B. Majumder, R. S. Katiyar, J. Power Sources 2005, 139, 261 – 268.en_US
dc.identifier.citedreferenceX. M. He, J. G. Ren, L. Wang, W. H. Pu, C. Y. Jiang, C. R. Wan, J. Power Sources 2009, 190, 154 – 156.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceJ. L. Wang, Z. D. Yao, C. W. Monroe, J. Yang, Y. N. Nuli, Adv. Funct. Mater. 2013, 23, 1194 – 1201;en_US
dc.identifier.citedreferenceJ. Fanous, M. Wegner, J. Grimminger, A. Andresen, M. R. Buchmeiser, Chem. Mater. 2011, 23, 5024 – 5028.en_US
dc.identifier.citedreferenceX. S. Liu, D. D. Wang, G. Liu, V. Srinivasan, Z. Liu, Z. Jussain, W. L. Yang, Nat. Commun. 2013, 4, 2568.en_US
dc.identifier.citedreferenceM. S. Park, S. B. Ma, D. J. Lee, D. M. Im, S. G. Doo, O. Yamamoto, Sci. Rep. 2014, 4, 3815.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceM. Koo, K. Park, S. H. Lee, M. Suh, D. Y. Jeon, J. W. Choi, K, Kang, K. J. Lee, Nano Lett. 2012, 12, 4810 – 4816;en_US
dc.identifier.citedreferenceZ. Song, T. Ma, R. Tang, Q. Cheng, X. Wang, D. Krishnaraju, R. Panat, C. K. Chan, H. Yu, H. Q. Jiang, Nat. Commun. 2014, 5, 3140.en_US
dc.identifier.citedreferenceX. L. Ji, K. T. Lee, L. F. Nazar, Nat. Mater. 2009, 8, 500 – 506;en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceZ. W. She, W. Y. Li, J. J. Cha, G. Y. Zheng, Y. Yang, M. T. McDowell, P. C. Hsu, Y. Cui, Nat. Commun. 2013, 4, 1331;en_US
dc.identifier.citedreferenceN. Jayaprakash, J. Shen, S. S. Moganty, A. Corona, L. A. Archer, Angew. Chem. 2011, 123, 6026 – 6030; Angew. Chem. Int. Ed. 2011, 50, 5904 – 5908;en_US
dc.identifier.citedreferenceY. Z. Fu, Y. S. Su, A. Manthiram, Angew. Chem. 2013, 125, 7068 – 7073; Angew. Chem. Int. Ed. 2013, 52, 6930 – 6935.en_US
dc.identifier.citedreferenceR. Van Noorden, Nature 2014, 507, 26 – 28.en_US
dc.identifier.citedreferenceX. L. Ji, L. F. Nazar, J. Mater. Chem. 2010, 20, 9821 – 9826.en_US
dc.identifier.citedreferenceY. X. Yin, S. Xin, Y. G. Guo, L. J. Wan, Angew. Chem. 2013, 125, 13426 – 13441; Angew. Chem. Int. Ed. 2013, 52, 13186 – 13200.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceJ. L. Wang, J. Yang, J. Y. Xie, N. X. Xu, Adv. Mater. 2002, 14, 963 – 965;en_US
dc.identifier.citedreferenceJ. Gao, M. A. Lowe, Y. Kiya, H. D. Abruna, J. Phys. Chem. C 2011, 115, 25132 – 25137.en_US
dc.identifier.citedreferenceO. S. Bushuyev, P. Brown, A. Maiti, R. H. Gee, G. R. Peterson, B. L. Weeks, L. J. H. Weeks, J. Am. Chem. Soc. 2012, 134, 1422 – 1425.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceK. Xu, S. S. Zhang, J. L. Allen, T. R. Jow, J. Electrochem. Soc. 2002, 149, A 1079 –A 1082;en_US
dc.identifier.citedreferenceS. S. Zhang, K. Xu, T. R. Jow, Electrochem. Solid‐State Lett. 2002, 5, A 206 –A 208.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceJ. Hassoun, B. Scrosati, Adv. Mater. 2010, 22, 5198 – 5201;en_US
dc.identifier.citedreferenceZ. Lin, Z. C. Liu, W. J. Fu, N. J. Dudney, C. D. Liang, Angew. Chem. 2013, 125, 7608 – 7611; Angew. Chem. Int. Ed. 2013, 52, 7460 – 7463;en_US
dc.identifier.citedreferenceJ. Dong, Z. Zhang, Y. Kusachi, K. Amine, J. Power Sources 2011, 196, 2255 – 2259;en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.