Show simple item record

Mass loading of the solar wind by a sungrazing comet

dc.contributor.authorRasca, A. P.en_US
dc.contributor.authorOran, R.en_US
dc.contributor.authorHorányi, M.en_US
dc.date.accessioned2014-10-07T16:09:47Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2014-10-07T16:09:47Z
dc.date.issued2014-08-16en_US
dc.identifier.citationRasca, A. P.; Oran, R.; Horányi, M. (2014). "Mass loading of the solar wind by a sungrazing comet." Geophysical Research Letters 41(15): 5376-5381.en_US
dc.identifier.issn0094-8276en_US
dc.identifier.issn1944-8007en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108676
dc.description.abstractCollisionless mass loading was suggested by Biermann et al. (1967) for describing interactions between the solar wind and cometary atmospheres. Recent observations have led to an increased interest in coronal mass loading due to sungrazing comets and collisional debris of sunward migrating interplanetary dust particles. In a previous paper, we presented a 3‐D MHD model of the solar corona based on the Block‐Adaptive‐Tree‐Solarwind‐Roe‐Upwind‐Scheme code which includes the interaction of dust with the solar wind. We have shown the impact on the solar wind from abrupt mass loading in the coronal region. We apply the model to a sungrazing cometary source, using ejected dust dynamics to generate tail‐shaped mass‐loading regions. Results help predict the effects on the solar wind acceleration and composition due to sungrazing comets, such as Comet C/2011 W3 (Lovejoy). We show how these effects may be detected by the upcoming Solar Probe Plus Mission. Key Points Application of mass loading in the SWMF SC component for sungrazing comets Extension to a tail source model for mass loading due to a sungrazing comet Prediction of mass‐loaded solar wind parameters along a space probe pathen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.titleMass loading of the solar wind by a sungrazing cometen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108676/1/grl51967.pdf
dc.identifier.doi10.1002/2014GL060990en_US
dc.identifier.sourceGeophysical Research Lettersen_US
dc.identifier.citedreferenceSolar Probe Plus ( 2008 ), Report of the science and technology definition team, Technical Report, Goddard Space Flight Center, NASA, Greenbelt, Md.en_US
dc.identifier.citedreferencevan der Holst, B., W. B. Manchester, R. A. Frazin, A. M. Vásquez, G. Tóth, and T. I. Gombosi ( 2010 ), A data‐driven, two‐temperature solar wind model with Alfvén waves, Astrophys. J., 725, 1373 – 1383.en_US
dc.identifier.citedreferenceKnight, M. M., and K. J. Walsh ( 2013 ), Will Comet ISON (C/2012 S1) survive perihelion?, Astrophys. J. Lett., 776, L5.en_US
dc.identifier.citedreferenceMann, I., and R. H. MacQueen ( 1996 ), Observation and analysis of the F‐corona brightness, Adv. Space Res., 17, 353 – 356.en_US
dc.identifier.citedreferenceMendis, D. A., H. L. F. Houpis, and M. L. Marconi ( 1985 ), The physics of comets, Fund. Cosmic Phys., 10, 1 – 380.en_US
dc.identifier.citedreferenceRasca, A. P. ( 2013 ), Modeling solar wind mass‐loading due to dust in the solar corona, PhD thesis, Univ. of Colorado at Boulder, Boulder, Colo.en_US
dc.identifier.citedreferenceRasca, A. P., and M. Horányi ( 2013 ), Solar wind mass‐loading due to dust, AIP Conf. Proc., 1539, 418 – 421.en_US
dc.identifier.citedreferenceRasca, A. P., M. Horányi, R. Oran, and B. van der Holst ( 2014 ), Modeling solar wind mass‐loading in the vicinity of the Sun using 3‐D MHD simulations, J. Geophys. Res. Space Physics, 119, 18 – 25, doi: 10.1002/2013JA019365.en_US
dc.identifier.citedreferenceRussell, C. T. ( 1990 ), Interplanetary magnetic field enhancements: Evidence for solar wind dust trail interactions, Adv. Space Res., 36, 159 – 162.en_US
dc.identifier.citedreferenceRussell, C. T., L. K. Jian, and J. G. Luhmann ( 2009 ), An unusual current sheet in an ICME: Possible association with C/2006 P1 (McNaught), Geophys. Res. Lett., 36, L07105, doi: 10.1029/2009GL037615.en_US
dc.identifier.citedreferenceSekanina, Z., and P. W. Chodas ( 2007 ), Fragmentation hierarchy of bright sungrazing comets and the birth and orbital evolution of the Kreutz system. II. The case for cascading fragmentation, Astrophys. J., 663, 657 – 676.en_US
dc.identifier.citedreferenceSekanina, Z., and P. W. Chodas ( 2012 ), Comet C/2011 W3 (Lovejoy): Orbit determination, outbursts, disintegration of nucleus, dust‐tail morphology, and relationship to new cluster of bright sungrazers, Astrophys. J., 757, 127.en_US
dc.identifier.citedreferenceSekanina, Z., and R. Kracht ( 2013 ), Population of SOHO/STEREO Kreutz sungrazers and the arrival of comet C/2011 W3 (Lovejoy), Astrophys. J., 778, 24.en_US
dc.identifier.citedreferenceTóth, G., et al. ( 2012 ), Adaptive numerical algorithms in space weather modeling, J. Comp. Phys., 231, 870 – 903.en_US
dc.identifier.citedreferenceBiermann, L., B. Brosowski, and H. U. Schmidt ( 1967 ), The interaction of the solar wind with a comet, Sol. Phys., 1, 254 – 284.en_US
dc.identifier.citedreferenceHollweg, J. V. ( 1986 ), Transition region, corona, and solar wind in coronal holes, J. Geophys. Res., 91, 4111 – 4125.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.