Show simple item record

Reduced Left Executive Control Network Functional Connectivity Is Associated with Alcohol Use Disorders

dc.contributor.authorWeiland, Barbara J.en_US
dc.contributor.authorSabbineni, Amithrupaen_US
dc.contributor.authorCalhoun, Vince D.en_US
dc.contributor.authorWelsh, Robert C.en_US
dc.contributor.authorBryan, Angela D.en_US
dc.contributor.authorJung, Rex E.en_US
dc.contributor.authorMayer, Andrew R.en_US
dc.contributor.authorHutchison, Kent E.en_US
dc.date.accessioned2014-10-07T16:09:54Z
dc.date.availableWITHHELD_12_MONTHSen_US
dc.date.available2014-10-07T16:09:54Z
dc.date.issued2014-09en_US
dc.identifier.citationWeiland, Barbara J.; Sabbineni, Amithrupa; Calhoun, Vince D.; Welsh, Robert C.; Bryan, Angela D.; Jung, Rex E.; Mayer, Andrew R.; Hutchison, Kent E. (2014). "Reduced Left Executive Control Network Functional Connectivity Is Associated with Alcohol Use Disorders." Alcoholism: Clinical and Experimental Research (9): 2445-2453.en_US
dc.identifier.issn0145-6008en_US
dc.identifier.issn1530-0277en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108693
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherMultivariate Softwareen_US
dc.subject.otherResting Stateen_US
dc.subject.otherExecutive Controlen_US
dc.subject.otherFunctional Connectivityen_US
dc.subject.otherFunctional Networken_US
dc.subject.otherAlcohol Dependenceen_US
dc.titleReduced Left Executive Control Network Functional Connectivity Is Associated with Alcohol Use Disordersen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMedicine (General)en_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108693/1/acer12505.pdf
dc.identifier.doi10.1111/acer.12505en_US
dc.identifier.sourceAlcoholism: Clinical and Experimental Researchen_US
dc.identifier.citedreferencePfefferbaum A, Sullivan EV, Mathalon DH, Lim KO ( 1997 ) Frontal lobe volume loss observed with magnetic resonance imaging in older chronic alcoholics. Alcohol Clin Exp Res 21: 521 – 529.en_US
dc.identifier.citedreferenceLyvers M ( 2000 ) “Loss of control” in alcoholism and drug addiction: a neuroscientific interpretation. Exp Clin Psychopharmacol 8: 225 – 245.en_US
dc.identifier.citedreferenceMacCallum RC, Wegener DT, Uchino BN, Fabrigar LR ( 1993 ) The problem of equivalent models in applications of covariance structure analysis. Psychol Bull 114: 185 – 199.en_US
dc.identifier.citedreferenceMiyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD ( 2000 ) The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cogn Psychol 41: 49 – 100.en_US
dc.identifier.citedreferenceMoselhy HF, Georgiou G, Kahn A ( 2001 ) Frontal lobe changes in alcoholism: a review of the literature. Alcohol Alcohol 36: 357 – 368.en_US
dc.identifier.citedreferenceOscar‐Berman M, Shagrin B, Evert DL, Epstein C ( 1997 ) Impairments of brain and behavior: the neurological effects of alcohol. Alcohol Health Res World 21: 65 – 75.en_US
dc.identifier.citedreferencePark SQ, Kahnt T, Beck A, Cohen MX, Dolan RJ, Wrase J, Heinz A ( 2010 ) Prefrontal cortex fails to learn from reward prediction errors in alcohol dependence. J Neurosci 30: 7749 – 7753.en_US
dc.identifier.citedreferenceParsons OA, Nixon SJ ( 1993 ) Neurobehavioral sequelae of alcoholism. Neurol Clin 11: 205 – 218.en_US
dc.identifier.citedreferencePfefferbaum A, Rosenbloom M, Rohlfing T, Sullivan EV ( 2009 ) Degradation of association and projection white matter systems in alcoholism detected with quantitative fiber tracking. Biol Psychiatry 65: 680 – 690.en_US
dc.identifier.citedreferencePitel AL, Beaunieux H, Witkowski T, Vabret F, Guillery‐Girard B, Quinette P, Desgranges B, Eustache F ( 2007 ) Genuine episodic memory deficits and executive dysfunctions in alcoholic subjects early in abstinence. Alcohol Clin Exp Res 31: 1169 – 1178.en_US
dc.identifier.citedreferencePower JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE ( 2012 ) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 59: 2142 – 2154.en_US
dc.identifier.citedreferenceRogers BP, Parks MH, Nickel MK, Katwal SB, Martin PR ( 2012 ) Reduced fronto‐cerebellar functional connectivity in chronic alcoholic patients. Alcohol Clin Exp Res 36: 294 – 301.en_US
dc.identifier.citedreferenceSaunders JB, Aasland OG, Babor TF, De La Fuente JR, Grant M ( 1993 ) Development of the alcohol use disorders identification test (AUDIT): WHO collaborative project on early detection of persons with harmful alcohol consumption‐II. Addiction 88: 791 – 804.en_US
dc.identifier.citedreferenceSchulte T, Muller‐Oehring EM, Pfefferbaum A, Sullivan EV ( 2010 ) Neurocircuitry of emotion and cognition in alcoholism: contributions from white matter fiber tractography. Dialogues Clin Neurosci 12: 554 – 560.en_US
dc.identifier.citedreferenceScott A, Courtney W, Wood D, de la Garza R, Lane S, King M, Wang R, Roberts J, Turner JA, Calhoun VD ( 2011 ) COINS: an innovative informatics and neuroimaging tool suite built for large heterogeneous datasets. Front Neuroinform 5: 33.en_US
dc.identifier.citedreferenceSeeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD ( 2007 ) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27: 2349 – 2356.en_US
dc.identifier.citedreferenceShirer WR, Ryali S, Rykhlevskaia E, Menon V, Greicius MD ( 2012 ) Decoding subject‐driven cognitive states with whole‐brain connectivity patterns. Cereb Cortex 22: 158 – 165.en_US
dc.identifier.citedreferenceSingh‐Curry V, Husain M ( 2009 ) The functional role of the inferior parietal lobe in the dorsal and ventral stream dichotomy. Neuropsychologia 47: 1434 – 1448.en_US
dc.identifier.citedreferenceSmith S, Fein G ( 2010 ) Cognitive performance in treatment‐naïve active alcoholics. Alcohol Clin Exp Res 34: 2097 – 2105.en_US
dc.identifier.citedreferenceSmith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, Filippini N, Watkins KE, Toro R, Laird AR, Beckmann CF ( 2009 ) Correspondence of the brain's functional architecture during activation and rest. Proc Natl Acad Sci U S A 106: 13040 – 13045.en_US
dc.identifier.citedreferenceSullivan E, Pfefferbaum A ( 2005 ) Neurocircuitry in alcoholism: a substrate of disruption and repair. Psychopharmacology 180: 583 – 594.en_US
dc.identifier.citedreferenceSullivan EV, Rosenbloom MJ, Pfefferbaum A ( 2000 ) Pattern of motor and cognitive deficits in detoxified alcoholic men. Alcohol Clin Exp Res 24: 611 – 621.en_US
dc.identifier.citedreferenceTomasi D, Volkow ND ( 2012 ) Aging and functional brain networks. Mol Psychiatry 17: 549 – 558.en_US
dc.identifier.citedreferenceUpadhyay J, Maleki N, Potter J, Elman I, Rudrauf D, Knudsen J, Wallin D, Pendse G, McDonald L, Griffin M, Anderson J, Nutile L, Renshaw P, Weiss R, Becerra L, Borsook D ( 2010 ) Alterations in brain structure and functional connectivity in prescription opioid‐dependent patients. Brain 133: 2098 – 2114.en_US
dc.identifier.citedreferenceVan Dijk KRA, Sabuncu MR, Buckner RL ( 2012 ) The influence of head motion on intrinsic functional connectivity MRI. NeuroImage 59: 431 – 438.en_US
dc.identifier.citedreferenceWelsh RC, Chen AC, Taylor SF ( 2010 ) Low‐frequency BOLD fluctuations demonstrate altered thalamocortical connectivity in schizophrenia. Schizophr Bull 36: 713 – 722.en_US
dc.identifier.citedreferenceWig GS, Schlaggar BL, Petersen SE ( 2011 ) Concepts and principles in the analysis of brain networks. Ann N Y Acad Sci 1224: 126 – 146.en_US
dc.identifier.citedreferenceAllen EA, Erhardt EB, Damaraju E, Gruner W, Segall JM, Silva RF, Havlicek M, Rachakonda S, Fries J, Kalyanam R, Michael AM, Caprihan A, Turner JA, Eichele T, Adelsheim S, Bryan AD, Bustillo J, Clark VP, Feldstein Ewing SW, Filbey F, Ford CC, Hutchison K, Jung RE, Kiehl KA, Kodituwakku P, Komesu YM, Mayer AR, Pearlson GD, Phillips JP, Sadek JR, Stevens M, Teuscher U, Thoma RJ, Calhoun VD ( 2011 ) A baseline for the multivariate comparison of resting state networks. Front Syst Neurosci 5: 1 – 23.en_US
dc.identifier.citedreferenceAndrews‐Hanna JR, Snyder AZ, Vincent JL, Lustig C, Head D, Raichle ME, Buckner RL ( 2007 ) Disruption of large‐scale brain systems in advanced aging. Neuron 56: 924 – 935.en_US
dc.identifier.citedreferenceBaddeley A, Della Sala S, Papagno C, Spinnler H ( 1997 ) Dual‐task performance in dysexecutive and nondysexecutive patients with a frontal lesion. Neuropsychology 11: 187 – 194.en_US
dc.identifier.citedreferenceBeck A, Wüstenberg T, Genauck A, Wrase J, Schlagenhauf F, Smolka MN, Mann K, Heinz A ( 2012 ) Effect of brain structure, brain function, and brain connectivity on relapse in alcohol‐dependent patients. Arch Gen Psychiatry 69: 842 – 852.en_US
dc.identifier.citedreferenceBeckmann CF, DeLuca M, Devlin JT, Smith SM ( 2005 ) Investigations into resting‐state connectivity using independent component analysis. Philos Trans R Soc Lond B Biol Sci 360: 1001 – 1013.en_US
dc.identifier.citedreferenceBentler PM, Wu EJ ( 2003 ) EQS 6.1 for Windows Beta Build 65 [Computer Software] [Computer Program]. Multivariate Software, Encino, CA.en_US
dc.identifier.citedreferenceCamchong J, Stenger A, Fein G ( 2012 ) Resting‐state synchrony during early alcohol abstinence can predict subsequent relapse. Cereb Cortex 23: 2086 – 2099.en_US
dc.identifier.citedreferenceCamchong J, Stenger A, Fein G ( 2013 ) Resting‐state synchrony in long‐term abstinent alcoholics. Alcohol Clin Exp Res 37: 75 – 85.en_US
dc.identifier.citedreferenceChakravarthy VS, Joseph D, Bapi R ( 2010 ) What do the basal ganglia do? A modeling perspective. Biol Cybern 103: 237 – 253.en_US
dc.identifier.citedreferenceChanraud S, Pitel A‐L, Pfefferbaum A, Sullivan EV ( 2011 ) Disruption of functional connectivity of the default‐mode network in alcoholism. Cereb Cortex 21: 2272 – 2281.en_US
dc.identifier.citedreferenceCourtney KE, Ghahremani DG, Ray LA ( 2013 ) Fronto‐striatal functional connectivity during response inhibition in alcohol dependence. Addict Biol 18: 593 – 604.en_US
dc.identifier.citedreferenceDamoiseaux JS, Beckmann CF, Arigita EJS, Barkhof F, Scheltens P, Stam CJ, Smith SM, Rombouts SARB ( 2008 ) Reduced resting‐state brain activity in the “default network” in normal aging. Cereb Cortex 18: 1856 – 1864.en_US
dc.identifier.citedreferenceDamoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF ( 2006 ) Consistent resting‐state networks across healthy subjects. Proc Natl Acad Sci U S A 103: 13848 – 13853.en_US
dc.identifier.citedreferenceDirksen CL, Howard JA, Cronin‐Golomb A, Oscar‐Berman M ( 2006 ) Patterns of prefrontal dysfunction in alcoholics with and without Korsakoff's syndrome, patients with Parkinson's disease, and patients with rupture and repair of the anterior communicating artery. Neuropsychiatr Dis Treat 2: 327 – 339.en_US
dc.identifier.citedreferenceEveritt BJ, Robbins TW ( 2005 ) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8: 1481 – 1489.en_US
dc.identifier.citedreferenceFair DA, Dosenbach NUF, Church JA, Cohen AL, Brahmbhatt S, Miezin FM, Barch DM, Raichle ME, Petersen SE, Schlaggar BL ( 2007 ) Development of distinct control networks through segregation and integration. Proc Natl Acad Sci U S A 104: 13507 – 13512.en_US
dc.identifier.citedreferenceGoldstein RZ, Leskovjan AC, Hoff AL, Hitzemann R, Bashan F, Khalsa SS, Wang G‐J, Fowler JS, Volkow ND ( 2004 ) Severity of neuropsychological impairment in cocaine and alcohol addiction: association with metabolism in the prefrontal cortex. Neuropsychologia 42: 1447 – 1458.en_US
dc.identifier.citedreferenceGreicius MD, Krasnow B, Reiss AL, Menon V ( 2003 ) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 100: 253 – 258.en_US
dc.identifier.citedreferenceGu H, Salmeron BJ, Ross TJ, Geng X, Zhan W, Stein EA, Yang Y ( 2010 ) Mesocorticolimbic circuits are impaired in chronic cocaine users as demonstrated by resting‐state functional connectivity. NeuroImage 53: 593 – 601.en_US
dc.identifier.citedreferenceHampson M, Driesen NR, Skudlarski P, Gore JC, Constable RT ( 2006 ) Brain connectivity related to working memory performance. J Neurosci 26: 13338 – 13343.en_US
dc.identifier.citedreferenceHarding AJ, Halliday GM, Ng JLF, Harper CG, Kril JJ ( 1996 ) Loss of vasopressin‐immunoreactive neurons in alcoholics is dose‐related and time‐dependent. Neuroscience 72: 699 – 708.en_US
dc.identifier.citedreferenceHeather N, Booth P, Luce A ( 1998 ) Impaired Control Scale: cross‐validation and relationships with treatment outcome. Addiction 93: 761 – 771.en_US
dc.identifier.citedreferenceKiviniemi V, Starck T, Remes J, Long X, Nikkinen J, Haapea M, Veijola J, Moilanen I, Isohanni M, Zang Y‐F, Tervonen O ( 2009 ) Functional segmentation of the brain cortex using high model order group PICA. Hum Brain Mapp 30: 3865 – 3886.en_US
dc.identifier.citedreferenceKril JJ, Halliday GM, Svoboda MD, Cartwright H ( 1997 ) The cerebral cortex is damaged in chronic alcoholics. Neuroscience 79: 983 – 998.en_US
dc.identifier.citedreferenceKrmpotich TD, Tregellas JR, Thompson LL, Banich MT, Klenk AM, Tanabe JL ( 2013 ) Resting‐state activity in the left executive control network is associated with behavioral approach and is increased in substance dependence. Drug Alcohol Depend 129: 1 – 7.en_US
dc.identifier.citedreferenceLaird AR, Fox PM, Eickhoff SB, Turner JA, Ray KL, McKay DR, Glahn DC, Beckmann CF, Smith SM, Fox PT ( 2011 ) Behavioral interpretations of intrinsic connectivity networks. J Cogn Neurosci 23: 4022 – 4037.en_US
dc.identifier.citedreferenceLishman WA ( 1990 ) Alcohol and the brain. Br J Psychiatry 156: 635 – 644.en_US
dc.identifier.citedreferenceLynall M‐E, Bassett DS, Kerwin R, McKenna PJ, Kitzbichler M, Muller U, Bullmore E ( 2010 ) Functional connectivity and brain networks in schizophrenia. J Neurosci 30: 9477 – 9487.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.