Show simple item record

Contrasting geochemical signatures on land from the Middle and Late Permian extinction events

dc.contributor.authorSheldon, Nathan D.en_US
dc.contributor.authorChakrabarti, Ramanandaen_US
dc.contributor.authorRetallack, Gregory J.en_US
dc.contributor.authorSmith, Roger M. H.en_US
dc.date.accessioned2014-10-07T16:09:55Z
dc.date.availableWITHHELD_13_MONTHSen_US
dc.date.available2014-10-07T16:09:55Z
dc.date.issued2014-10en_US
dc.identifier.citationSheldon, Nathan D.; Chakrabarti, Ramananda; Retallack, Gregory J.; Smith, Roger M. H. (2014). "Contrasting geochemical signatures on land from the Middle and Late Permian extinction events." Sedimentology 61(6): 1812-1829.en_US
dc.identifier.issn0037-0746en_US
dc.identifier.issn1365-3091en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108696
dc.description.abstractThe end of the Palaeozoic is marked by two mass‐extinction events during the Middle Permian (Capitanian) and the Late Permian (Changhsingian). Given similarities between the two events in geochemical signatures, such as large magnitude negative δ 13 C anomalies, sedimentological signatures such as claystone breccias, and the approximate contemporaneous emplacement of large igneous provinces, many authors have sought a common causal mechanism. Here, a new high‐resolution continental record of the Capitanian event from Portal Mountain, Antarctica, is compared with previously published Changhsingian records of geochemical signatures of weathering intensity and palaeoclimatic change. Geochemical means of discriminating sedimentary provenance (Ti/Al, U/Th and La/Ce ratios) all indicate a common provenance for the Portal Mountain sediments and associated palaeosols, so changes spanning the Capitanian extinction represent changes in weathering intensity rather than sediment source. Proxies for weathering intensity chemical index of alteration, ∆ W and rare earth element accumulation all decline across the Capitanian extinction event at Portal Mountain, which is in contrast to the increased weathering recorded globally at the Late Permian extinction. Furthermore, palaeoclimatic proxies are consistent with unchanging or cooler climatic conditions throughout the Capitanian event, which contrasts with Changhsingian records that all indicate a significant syn‐extinction and post‐extinction series of greenhouse warming events. Although both the Capitanian and Changhsingian event records indicate significant redox shifts, palaeosol geochemistry of the Changhsingian event indicates more reducing conditions, whereas the new Capitanian record of reduced trace metal abundances (Cr, Cu, Ni and Ce) indicates more oxidizing conditions. Taken together, the differences in weathering intensity, redox and the lack of evidence for significant climatic change in the new record suggest that the Capitanian mass extinction was not triggered by dyke injection of coal‐beds, as in the Changhsingian extinction, and may instead have been triggered directly by the Emeishan large igneous province or by the interaction of Emeishan basalts with platform carbonates.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherGreenhouse Climateen_US
dc.subject.otherMass Extinctionsen_US
dc.subject.otherPalaeoclimateen_US
dc.subject.otherPalaeosolsen_US
dc.subject.otherPalaeozoicen_US
dc.subject.otherAntarcticaen_US
dc.subject.otherWeatheringen_US
dc.titleContrasting geochemical signatures on land from the Middle and Late Permian extinction eventsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108696/1/sed12117.pdf
dc.identifier.doi10.1111/sed.12117en_US
dc.identifier.sourceSedimentologyen_US
dc.identifier.citedreferenceSheldon, N.D. ( 2005 ) Do red beds indicate paleoclimatic conditions?: a Permian case study. Palaeogeogr. Palaeoclimatol. Palaeoecol., 228, 305 – 319.en_US
dc.identifier.citedreferenceSheldon, N.D. and Retallack, G.J. ( 2002 ) Low oxygen levels in earliest Triassic soils. Geology, 30, 919 – 922.en_US
dc.identifier.citedreferenceSheldon, N.D. and Tabor, N.J. ( 2009 ) Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth Sci. Rev., 95, 1 – 52.en_US
dc.identifier.citedreferenceSheldon, N.D., Retallack, G.J. and Tanaka, S. ( 2002 ) Geochemical climofunctions from North American soils and applications to paleosols across the Eocene‐Oligocene boundary in Oregon. J. Geol., 110, 687 – 696.en_US
dc.identifier.citedreferenceSheldon, N.D., Costa, E., Cabrera, L. and Garcés, M. ( 2012 ) Continental climatic and weathering response to the Eocene‐Oligocene transition. J. Geol., 120, 227 – 236.en_US
dc.identifier.citedreferenceShen, S.‐Z., Crowley, J.L., Wang, Y., Bowring, S.A., Erwin, D.H., Sadler, P.M., Cao, C.‐Q., Rothman, D.H., Henderson, C.M., Ramezani, J., Zhang, H., Shen, Y., Wang, X.‐D., Wang, W., Mu, L., Li, W.‐Z., Tang, Y.‐G., Liu, X.‐L., Liu, L.‐J., Zeng, Y., Jiang, Y.‐F. and Jin, Y.‐G. ( 2011 ) Calibrating the end‐Permian mass extinction. Sciencexpress, 334, 1367 – 1372.en_US
dc.identifier.citedreferenceStanley, S.M. and Yang, X. ( 1994 ) A double mass extinction at the end of the Paleozoic era. Science, 266, 1340 – 1344.en_US
dc.identifier.citedreferenceStevens, L.G., Hilton, J., Bond, D.P.G., Glasspool, I.J. and Jardine, P.E. ( 2011 ) Radiation and extinction patterns in Permian floras from North China as indicators for environmental and climate change. J. Geol. Soc. London, 168, 607 – 619.en_US
dc.identifier.citedreferenceTabor, N.J., Smith, R.M.H., Steyer, J.S., Sidor, C.A. and Poulsen, C.J. ( 2011 ) The Permian Moradi Formation of northern Niger: paleosol morphology, petrography and mineralogy. Palaeogeogr. Palaeoclimatol. Palaeoecol., 299, 200 – 213.en_US
dc.identifier.citedreferenceTakeuchi, A., Larson, P.B. and Suzuki, K. ( 2007 ) Influence of paleorelief on the Mid‐Miocene climatic variation in southeastern Washington, northeastern Oregon, and western Idaho, USA. Palaeogeogr. Palaeoclimatol. Palaeoecol., 254, 462 – 476.en_US
dc.identifier.citedreferenceThomas, S.G., Tabor, N.J., Yang, W., Myers, T.S., Yang, Y. and Wang, D. ( 2011 ) Palaeosol stratigraphy across the Permian‐Triassic boundary, Bogda Mountains, NW China: implications for palaeoenvironmental transition through Earth's largest mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol., 308, 41 – 64.en_US
dc.identifier.citedreferenceTyler, G. ( 2004 ) Rare earth elements in soil and plant systems – a review. Plant Soil, 267, 191 – 206.en_US
dc.identifier.citedreferenceWang, W., Cao, C.‐Q. and Wang, Y. ( 2004 ) The carbon isotope excursion on GSSP candidate section of Lopingian‐Guadalupian boundary. Earth Planet. Sci. Lett., 220, 57 – 67.en_US
dc.identifier.citedreferenceWard, P.D., Montgomery, D.R. and Smith, R. ( 2000 ) Altered river morphology in South Africa related to the Permian‐Triassic extinction. Science, 289, 740 – 743.en_US
dc.identifier.citedreferenceWard, P.D., Botha, J., Buick, R., de Kock, M.O., Erwin, D.H., Garrison, G., Kirschvink, J. and Smith, R. ( 2005 ) Abrupt and gradual extinction among Late Permian vertebrates in the Karoo Basin, South Africa. Science, 307, 709 – 714.en_US
dc.identifier.citedreferenceWeidlich, O. ( 2002 ) Permian reefs re‐examined: extrinsic control mechanisms of gradual and abrupt changes during 40 my of reef evolution. Geobios Mém. Spéc., 24, 287 – 294.en_US
dc.identifier.citedreferencevan der Weijden, C.H. and van der Weijden, R.D. ( 1995 ) Mobility of major, minor and some redox‐sensitive trace elements and rare‐earth elements during weathering of four granitoids in central Portugal. Chem. Geol., 125, 149 – 167.en_US
dc.identifier.citedreferenceWignall, P.B., Sun, Y.‐D., Bond, D.P.G., Izon, G., Newton, R.J., Vedrine, S., Widdowson, M., Ali, J.R., Lai, X.‐L., Jiang, H.‐S., Cope, H. and Bottrell, S.H. ( 2009 ) Volcanism, mass extinction, and carbon isotope fluctuations in the Middle Permian of China. Science, 324, 1179 – 1182.en_US
dc.identifier.citedreferenceWignall, P.B., Bond, D.P.G., Kuwahara, K., Kakuwa, Y., Newton, R.G. and Poulton, S.W. ( 2010 ) An 80 million year oceanic redox history from Permian to Jurassic pelagic sediments of the Mino‐Tamba terrane, SW Japan, and the original of four mass extinctions. Global Planet. Change, 71, 109 – 123.en_US
dc.identifier.citedreferenceWignall, P.B., Bond, D.P.G., Haas, J., Wang, W., Jiang, H., Lai, X., Altiner, D., Védrine, S., Hips, K., Zajzon, N., Sun, Y. and Newton, R.J. ( 2012 ) Capitanian (Middle Permian) mass extinction and recovery in western Tethys: a fossil, facies, and δ 13 C study from Hungary and Hydra Island (Greece). Palaios, 27, 78 – 89.en_US
dc.identifier.citedreferenceWimpenny, J., Gannoun, A., Burton, K.W., Widdowson, M., James, R.H. and Gíslason, S.R. ( 2007 ) Rhenium and osmium isotope and elemental behavior accompanying laterite formation in the Deccan region of India. Earth Planet. Sci. Lett., 261, 239 – 258.en_US
dc.identifier.citedreferencede Wit, M.J., Ghosh, J.G., de Villiers, S., Rakotosolofo, N., Alexander, J., Tripathi, A. and Looy, C. ( 2002 ) Multiple organic carbon isotope reversals across the Permo‐Triassic boundary of terrestrial Gondwanan sequences: clues to extinction patterns and delayed ecosystem recovery. J. Geol., 110, 227 – 240.en_US
dc.identifier.citedreferenceYang, W., Feng, Q., Liu, Y., Tabor, N., Miggins, D., Crowley, J.L., Lin, J. and Thomas, S. ( 2010 ) Depositional environments and cyclo‐ and chronostratigraphy of uppermost Carboniferous‐Lower Triassic fluvial‐lacustrine deposits, southern Bogda Mountains, NW China – a terrestrial paleoclimate record of mid‐latitude NE Pangea. Global Planet. Change, 73, 15 – 113.en_US
dc.identifier.citedreferenceZhang, G.‐L., Pan, J.‐H., Huang, C.‐M. and Gong, Z.‐T. ( 2007 ) Geochemical features of a soil chronosequence developed on basalt in Hainan Island, China. Rev. Mex. de Ciecias Geol., 24, 261 – 269.en_US
dc.identifier.citedreferenceZhou, M.‐F., Malpas, J., Song, X.‐Y., Robinson, P.T., Sun, M., Kennedy, A.K., Lesher, C.M. and Keays, R.R. ( 2002 ) A temporal link between the Emeishan large igneous province (SW China) and the end‐Guadalupian mass extinction. Earth Planet. Sci. Lett., 196, 113 – 122.en_US
dc.identifier.citedreferenceRetallack, G.J. ( 2008 ) Cambrian paleosols and landscapes of South Australia. Aust. J. Earth Sci., 55, 1083 – 1106.en_US
dc.identifier.citedreferenceAlgeo, T.J. and Twitchett, R.J. ( 2010 ) Anomalous Early Triassic sediment fluxes due to elevated weathering rtes and their biological consequences. Geology, 38, 1023 – 1026.en_US
dc.identifier.citedreferenceAlgeo, T.J., Chen, Z.Q., Fraiser, M.L. and Twitchett, R.J. ( 2011a ) Terrestrial‐marine teleconnections in the collapse and rebuilding of Early Triassic marine ecosystems. Palaeogeogr. Palaeoclimatol. Palaeoecol., 308, 1 – 11.en_US
dc.identifier.citedreferenceJin, Y.‐G., Wang, Y., Wang, W., Sheng, Q., Cao, C.‐Q. and Erwin, D.H. ( 2000 ) Pattern of marine mass extinction across the Permian‐Triassic boundary in south China. Science, 289, 432 – 436.en_US
dc.identifier.citedreferenceAlgeo, T.J., Kuwahara, K., Sano, H., Bates, S., Lyons, T., Elswick, E., Hinnov, L., Ellwood, B., Moser, J. and Maynard, J.B. ( 2011b ) Spatial variation in sediment fluxes, redox conditions, and productivity in the Permian‐Triassic Panthalassic Ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol., 308, 65 – 83. doi: 10.1016/j.palaeo.2010.07.007en_US
dc.identifier.citedreferenceAskin, R.A. ( 1997 ) Permian palynomorphs for southern Victoria Land, Antarctica. Antarct. J. US, 30, 47 – 48.en_US
dc.identifier.citedreferenceBerner, R.A. ( 2002 ) Examination of hypotheses for the Permo‐Triassic boundary extinction by carbon cycle modeling. Proc. Natl Acad. Sci., 99, 4172 – 4177.en_US
dc.identifier.citedreferenceBond, D.P.G. and Wignall, P.B. ( 2009 ) Latitudinal selectivity of foraminifer extinctions during the Late Guadalupian crisis. Paleobiology, 35, 465 – 483.en_US
dc.identifier.citedreferenceBond, D.P.G., Hilton, J., Wignall, P.B., Ali, J.R., Stevens, L.G., Sun., Y. and Lai, X. ( 2010 ) The Middle Permian (Capitanian) mass extinction on land and in the oceans. Earth Sci. Rev., 102, 100 – 116.en_US
dc.identifier.citedreferenceChen, Z.‐Q. and Benton, M.J. ( 2012 ) The timing and pattern of biotic recovery following the end‐Permian mass extinction. Nat. Geosci., 5, 375 – 383.en_US
dc.identifier.citedreferenceClapham, M.E., Shen, S.‐Z. and Bottjer, D.J. ( 2009 ) The double mass extinction revisited: reassessing the severity, selectivity, and causes of the end‐Guadalupian biotic crisis (Late Permian). Paleobiology, 35, 32 – 50.en_US
dc.identifier.citedreferenceCollinson, J.W., Isbell, J.L., Elliot, D.H., Miller, M.F., Miller, J.M.G. and Veevers, J.J. ( 1994 ) Permian‐Triassic Transantarctic basin. In: Permian‐Triassic Pangean Basins and Foldbelts Along the Panthalassan Margin of Gondwanaland (Eds J.J. Veevers and C.M. Powell ), Geol. Soc. Am. Mem., 184, 173 – 222.en_US
dc.identifier.citedreferenceCompston, W. ( 1960 ) The carbon isotope composition of certain marine invertebrates and coals from the Australian Permian. Geochim. Cosmochim. Acta, 18, 1 – 22.en_US
dc.identifier.citedreferenceDe la Horra, R., Galan‐Abellan, A.B., Lopez‐Gomez, J., Sheldon, N.D., Barrenechea, J.F., Luque, F.J., Arche, A. and Benito, M.I. ( 2012 ) Paleoecological and paleoenvironmental changes during the continental Middle‐Late Permian transition at the SE Iberian Ranges, Spain. Global Planet. Change, 94–95, 46 – 61.en_US
dc.identifier.citedreferenceDriese, S.G., Medaris, G., Jr, Ren, M., Runkel, A.C. and Langford, R.P. ( 2007 ) Differentiating pedogenesis from diagenesis in early terrestrial paleoweathering surfaces formed on granitic composition parent materials. J. Geol., 115, 387 – 406.en_US
dc.identifier.citedreferenceErwin, D.H., Bowring, S.A. and Jin, Y.‐G. ( 2002 ). End‐Permian mass‐extinctions: a review. In: Catastrophic Events and Mass Extinctions: Impacts and Beyond (Eds C. Koeberl and K.G. MacLeod ), Geol. Soc. Am. Spec. Pap., 356, 353 – 383.en_US
dc.identifier.citedreferenceFarabee, M.J., Taylor, E.L. and Taylor, T.N. ( 1990 ) Correlation of Permian and Triassic palynomorph assemblages from the central Transantarctic Mountains, Antarctica. Rev. Palaeobot. Palynol., 65, 257 – 265.en_US
dc.identifier.citedreferenceFarabee, M.J., Taylor, E.L. and Taylor, T.N. ( 1991 ) Late Permian palynomorphs from the Buckley Formation, central Transantarctic Mountains, Antarctica. Rev. Palaeobot. Palynol., 69, 353 – 368.en_US
dc.identifier.citedreferenceFio, K., Spangenberg, J.E., Vlahović, I., Sremac, J., Velić, I. and Mrinjek, E. ( 2010 ) Stable isotope and trace element stratigraphy across the Permian‐Triassic transition: a redefinition of the boundary in the Velebit Mountain, Crotia. Chem. Geol., 278, 38 – 57.en_US
dc.identifier.citedreferenceGrasby, S.E., Sanei, H. and Beauchamp, B. ( 2011 ) Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nat. Geosci., 4, 104 – 107.en_US
dc.identifier.citedreferenceGueniot, G., Munier‐Lamy, C. and Berthelin, J. ( 1988a ) Geochemical behavior of uranium in soils, part I. Influence of pedogenetic processes on the distribution in aerated soils. J. Geochem. Explor., 31, 21 – 37.en_US
dc.identifier.citedreferenceGueniot, G., Munier‐Lamy, C. and Berthelin, J. ( 1988b ) Geochemical behavior of uranium in soils, part II. Distribution of uranium in hydromorphic soils and soil sequences. Applications for surficial prospecting. J. Geochem. Explor., 31, 39 – 55.en_US
dc.identifier.citedreferenceHamer, J.M.M., Sheldon, N.D., Nichols, G.J. and Collinson, M.E. ( 2007 ) Late Oligocene – Early Miocene Palaeosols of Distal Fluvial Systems, Ebro Basin, Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol., 247, 220 – 235.en_US
dc.identifier.citedreferenceHuey, R.B. and Ward, P.D. ( 2005 ) Hypoxia, global warming and terrestrial Late Permian extinctions. Science, 308, 398 – 401.en_US
dc.identifier.citedreferenceIrmis, R.B. and Whiteside, J.H. ( 2012 ) Delayed recovery of non‐marne tetrapods after the end‐Permian mass extinction tracks global carbon cycle. Proc. R. Soc. B Biol. Sci., 279, 1310 – 1318.en_US
dc.identifier.citedreferenceIsbell, J.L. and Askin, R.A. ( 1999 ) Comment: search for evidence of impact at the Permian‐Triassic boundary in Antarctica and Australia. Geology, 27, 859.en_US
dc.identifier.citedreferenceIsbell, J.L. and Cuneo, N.R. ( 1996 ) Depositional framework of Permian coal‐bearing strata, southern Victoria Land, Antarctica. Palaeogeogr. Palaeoclimatol. Palaeoecol., 125, 217 – 238.en_US
dc.identifier.citedreferenceIsozaki, Y., Kawahata, H. and Ota, A. ( 2007 ) A unique carbon isotope record across the Guadalupian‐Lopingian (Middle‐Upper Permian) boundary in mid‐oceanic paleo‐atoll carbonates: the high‐productivity “Kamura Event” and its collapse in Panthalassa. Global Planet. Change, 55, 21 – 38.en_US
dc.identifier.citedreferenceJin, Y‐G., Zhang, J. and Shang, Q‐H. ( 1994 ) Two phases of the end‐Permian mass extinction. In: Pangea: Global Environments and Resources (Eds A.F. Embry, B. Beauchamp and D.J. Glass ), Can. Soc. Petrol. Geol. Mem., 17, 813 – 822.en_US
dc.identifier.citedreferenceKahmann, J.A. and Driese, S.G. ( 2008 ) Paleopedology and geochemistry of the Late Mississippian (Chesterian) Pennington Formation paleosols at Pound Gap, Kentucky, USA: implications for high‐frequency climate variations. Palaeogeogr. Palaeoclimatol. Palaeoecol., 259, 357 – 381.en_US
dc.identifier.citedreferenceKahmann, J.A., Seaman, J., III and Driese, S.G. ( 2008 ) Evaluating trace elements as paleoclimatic indicators: multivariate statistical analysis of late Mississippian Pennington Formation paleosols, Kentucky, USA. J. Geol., 116, 254 – 268.en_US
dc.identifier.citedreferenceKalinin, P.I. and Alekseev, A.O. ( 2011 ) Geochemical characterization of loess‐soil complexes on the Terek‐Kuma Plain and the Azov‐Kuban' Lowland. Eurasian Soil Sci., 44, 1315 – 1332.en_US
dc.identifier.citedreferenceKidder, D.L. and Worsley, T.R. ( 2003 ) Causes and consequences of extreme Permo‐Triassic warming to globally equable climate and relation to the Permo‐Triassic extinction and recovery. Palaeogeogr. Palaeoclimatol. Palaeoecol., 203, 207 – 237.en_US
dc.identifier.citedreferenceKnoll, A.H., Bamback, R.K., Canfield, D.E. and Grotzinger, J.G. ( 1996 ) Comparative earth history and the Late Permian mass extinction. Science, 273, 452 – 457.en_US
dc.identifier.citedreferenceKraus, M.J. and Aslan, A. ( 1993 ) Eocene hydromorphic paleosols: significance for interpreting ancient floodplain processes. J. Sed. Petrol., 63, 453 – 463.en_US
dc.identifier.citedreferenceKrause, J.M., Bellosi, E.S. and Raigemborn, M.S. ( 2010 ) Lateritized tephric palaeosols from Central Patagonia: a southern high‐latitude archive of Palaeogene global greenhouse conditions. Sedimentology, 57, 1721 – 1749.en_US
dc.identifier.citedreferenceKrull, E.S. and Retallack, G.J. ( 2000 ) δ 13 C org depth profiles from palaeosols across the Permian‐Triassic boundary: evidence for methane release. Geol. Soc. Am. Bull., 112, 1459 – 1472.en_US
dc.identifier.citedreferenceLai, X., Wang, W., Wignall, P.B., Bond, D.P.G., Jiang, H., Ali, J.R., John, E.H. and Sun, Y. ( 2008 ) Palaeoenvironmental change during the end‐Guadalupian (Permian) mass extinction in Sichuan, China. Palaeogeogr. Palaeoclimatol. Palaeoecol., 269, 78 – 93.en_US
dc.identifier.citedreferenceLucas, S.G. ( 2009 ) Timing and magnitude of tetrapod extinctions across the permo‐Triassic boundary. J. Asian Earth Sci., 36, 491 – 502.en_US
dc.identifier.citedreferenceLudvigson, G.A., Gonzalez, L.A., Metzger, R.A., Witzke, B.J., Brenner, R.L., Murillo, A.P. and White, T.S. ( 1998 ) Meteoric sphaerosiderite lines and the use for paleo‐hydrology and paleoclimatology. Geology, 25, 1039 – 1042.en_US
dc.identifier.citedreferenceMcGhee, G.R., Jr, Clapham, M.E., Sheehan, P.M., Bottjer, D.J. and Droser, M.L. ( 2013 ) A new ecological‐severity ranking of major Phanerozoic biodiversity crises. Palaeogeogr. Palaeoclimatol. Palaeoecol., 370, 260 – 270.en_US
dc.identifier.citedreferenceMichaelson, P. ( 2002 ) Mass‐extinction of peat‐forming plants and the effect on fluvial styles across the Permian‐Triassic boundary, northern Bowen Basin, Australia. Palaeogeogr. Palaeoclimatol. Palaeoecol., 179, 173 – 188.en_US
dc.identifier.citedreferenceMitchell, R.L. and Sheldon, N.D. ( 2009 ) Weathering and paleosol formation in the 1.1 Ga Keweenawan Rift. Precambrian Res., 168, 271 – 283.en_US
dc.identifier.citedreferenceMitchell, R.L. and Sheldon, N.D. ( 2010 ) The ~1100 Ma Sturgeon Falls Paleosol revisited: implications for Mesoproterozoic weathering environments and atmospheric CO 2 levels. Precambrian Res., 183, 738 – 748.en_US
dc.identifier.citedreferenceMorante, R. ( 1996 ) Permian and Early Triassic isotopic records of carbon and strontium in Australia and a scenario of events about the Permian‐Triassic boundary. Hist. Biol., 11, 289 – 310.en_US
dc.identifier.citedreferenceMundil, R., Ludwig, K.R., Metcalfe, I. and Renne, P.R. ( 2004 ) Age and timing of Permian mass extinctions: U/Pb dating of closed‐system zircons. Science, 305, 1760 – 1763.en_US
dc.identifier.citedreferenceNakamura, N. ( 1974 ) Determination of REE, Ba, Fe, Mg, Na, and K in carbonaceous and ordinary chondrites. Geochim. Cosmochim. Acta, 38, 757 – 775.en_US
dc.identifier.citedreferenceNesbitt, H.W. and Young, G.M. ( 1982 ) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715 – 717.en_US
dc.identifier.citedreferenceNewell, A.J., Tverdokhlebov, V.P. and Benton, M.J. ( 1999 ) Interplay of tectonics and climate on a transverse fluvial system, Upper Permian, Southern Uralian Foreland Basin, Russia. Sed. Geol., 127, 11 – 29.en_US
dc.identifier.citedreferenceOgden, D.E. and Sleep, N.H. ( 2012 ) Explosive eruption of coal and basalt and the end‐Permian mass‐extinction. Proc. Natl Acad. Sci. US, 109, 59 – 62.en_US
dc.identifier.citedreferenceOhta, T., Li, G., Hirano, H., Sakai, T., Kozai, T., Yoshikawa, T. and Kaneko, A. ( 2011 ) Early Cretaceous terrestrial weathering in Northern China: relationship between paleoclimate change and the phased evolution of the Jehol Biota. J. Geol., 119, 81 – 96.en_US
dc.identifier.citedreferencePett‐Ridge, J.C., Monastra, V.M., Derry, L.A. and Chadwick, O.A. ( 2007 ) Importance of atmospheric inputs and Fe‐oxides in controlling soil uranium budgets and behavior along a Hawaiian chronosequence. Chem. Geol., 244, 691 – 707.en_US
dc.identifier.citedreferenceReichow, M.K., Pringle, M.S., Al'Mukhamedov, A.I., Allen, M.B., Andreichev, V.L., Buslov, M.M., Davies, C.E., Fedoseev, G.S., Fitton, J.G., Inger, S., Medvedev, A.Y., Mitchell, C., Puchkov, V.N., Safonova, I.Y., Scott, R.A. and Saunders, A.D. ( 2009 ) The timing and extent of the eruption of the Siberian Traps large igneous province: implications for the end‐Permian environmental crisis. Earth Planet. Sci. Lett., 277, 9 – 20.en_US
dc.identifier.citedreferenceRetallack, G.J. ( 1995 ) Permian‐Triassic extinction on land. Science, 267, 77 – 80.en_US
dc.identifier.citedreferenceRetallack, G.J. ( 2005 ) Early Triassic claystone breccias and soil erosion crisis. J. Sed. Res., 75, 663 – 679.en_US
dc.identifier.citedreferenceRetallack, G.J. and Jahren, A.H. ( 2008 ) Methane release from igneous intrusion of coal during the late Permian extinction events. J. Geol., 116, 1 – 20.en_US
dc.identifier.citedreferenceRetallack, G.J. and Krull, E. ( 2006 ) Carbon isotopic evidence for terminal‐Permian methan outbursts and their role in the extinctions of animals, plants, coral reefs, and peat swamps. In: Wetlands Through Time (Eds S.F. Greg and W.A. DiMichele ), Geol. Soc. Am. Spec. Pap., 399, 249 – 268.en_US
dc.identifier.citedreferenceRetallack, G.J., Veevers, J.J. and Morante, R. ( 1996 ) Global coal gap between the Permian‐Triassic extinction and Middle Triassic recovery of peat‐forming plants. Geol. Soc. Am. Bull., 108, 195 – 207.en_US
dc.identifier.citedreferenceRetallack, G.J., Jahren, H., Sheldon, N.D., Chakrabarti, R., Metzger, C.A. and Smith, R.M.H. ( 2005 ) The Permian‐Triassic boundary in Antarctica. Antarct. Sci., 17, 241 – 258.en_US
dc.identifier.citedreferenceRetallack, G.J., Metzger, C.A., Jahren, A.H., Greaver, T., Smith, R.M.H. and Sheldon, N.D. ( 2006 ) Middle‐Late Permian mass extinction on land. Geol. Soc. Am. Bull., 118, 1398 – 1411.en_US
dc.identifier.citedreferenceRetallack, G.J., Sheldon, N.D., Carr, P.F., Fanning, M., Thompson, C.A., Williams, M.L., Jones, B.G. and Hutton, A. ( 2011 ) Multiple Early Triassic greenhouse crises impeded recovery from Late Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol., 308, 233 – 251. doi: 10.1016/j.palaeo.2010.09.022.en_US
dc.identifier.citedreferenceSephton, M.A., Looy, C.V., Brinkhuis, H., Wignall, P.B., de Leeuw, J.W. and Visscher, H. ( 2005 ) Catastrophic soil erosion during the end‐Permian biotic crisis. Geology, 33, 941 – 944.en_US
dc.identifier.citedreferenceSheldon, N.D. ( 2006a ) Abrupt chemical weathering increase across the Permian‐Triassic boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol., 231, 315 – 321.en_US
dc.identifier.citedreferenceSheldon, N.D. ( 2006b ) Quaternary glacial‐interglacial climate cycles in Hawaii. J. Geol., 114, 367 – 376.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.