Show simple item record

Flagellin‐induced expression of CXCL10 mediates direct fungal killing and recruitment of NK cells to the cornea in response to Candida albicans infection

dc.contributor.authorLiu, Xiaoweien_US
dc.contributor.authorGao, Nanen_US
dc.contributor.authorDong, Chenen_US
dc.contributor.authorZhou, Lien_US
dc.contributor.authorMi, Qing‐shengen_US
dc.contributor.authorStandiford, Theodore J.en_US
dc.contributor.authorYu, Fu‐shin X.en_US
dc.date.accessioned2014-10-07T16:09:56Z
dc.date.availableWITHHELD_12_MONTHSen_US
dc.date.available2014-10-07T16:09:56Z
dc.date.issued2014-09en_US
dc.identifier.citationLiu, Xiaowei; Gao, Nan; Dong, Chen; Zhou, Li; Mi, Qing‐sheng ; Standiford, Theodore J.; Yu, Fu‐shin X. (2014). "Flagellinâ induced expression of CXCL10 mediates direct fungal killing and recruitment of NK cells to the cornea in response to Candida albicans infection." European Journal of Immunology 44(9): 2667-2679.en_US
dc.identifier.issn0014-2980en_US
dc.identifier.issn1521-4141en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108697
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherCXCL10en_US
dc.subject.otherFungal Keratitisen_US
dc.subject.otherInnate Immunityen_US
dc.subject.otherNatural Killer Cellsen_US
dc.subject.otherAntimicrobial Peptidesen_US
dc.titleFlagellin‐induced expression of CXCL10 mediates direct fungal killing and recruitment of NK cells to the cornea in response to Candida albicans infectionen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbsecondlevelPublic Healthen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108697/1/eji3053-sup-0001-SupMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108697/2/eji3053.pdf
dc.identifier.doi10.1002/eji.201444490en_US
dc.identifier.sourceEuropean Journal of Immunologyen_US
dc.identifier.citedreferenceGroom, J. R. and Luster, A. D., CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol. Cell Biol. 2011. 89: 207 – 215.en_US
dc.identifier.citedreferenceCole, A. M., Ganz, T., Liese, A. M., Burdick, M. D., Liu, L. and Strieter, R. M., Cutting edge: IFN‐inducible ELR‐ CXC chemokines display defensin‐like antimicrobial activity. J. Immunol. 2001. 167: 623 – 627.en_US
dc.identifier.citedreferenceYoneyama, M., Suhara, W. and Fujita, T., Control of IRF‐3 activation by phosphorylation. J. Interferon Cytokine Res. 2002. 22: 73 – 76.en_US
dc.identifier.citedreferenceBedoui, S., Kupz, A., Wijburg, O. L., Walduck, A. K., Rescigno, M. and Strugnell, R. A., Different bacterial pathogens, different strategies, yet the aim is the same: evasion of intestinal dendritic cell recognition. J. Immunol. 2010. 184: 2237 – 2242.en_US
dc.identifier.citedreferenceZhou, X. F., Yu, J., Chang, M., Zhang, M., Zhou, D., Cammas, F. and Sun, S. C., TRIM28 mediates chromatin modifications at the TCRalpha enhancer and regulates the development of T and natural killer T cells. Proc. Natl. Acad. Sci. USA 2012. 109: 20083 – 20088.en_US
dc.identifier.citedreferenceCrawford, M. A., Lowe, D. E., Fisher, D. J., Stibitz, S., Plaut, R. D., Beaber, J. W., Zemansky, J. et al., Identification of the bacterial protein FtsX as a unique target of chemokine‐mediated antimicrobial activity against Bacillus anthracis. Proc. Natl. Acad. Sci. USA 2011. 108: 17159 – 17164.en_US
dc.identifier.citedreferenceYang, D., Chen, Q., Hoover, D. M., Staley, P., Tucker, K. D., Lubkowski, J. and Oppenheim, J. J., Many chemokines including CCL20/MIP‐3alpha display antimicrobial activity. J. Leukoc. Biol. 2003. 74: 448 – 455.en_US
dc.identifier.citedreferenceYoon, G. S., Dong, C., Gao, N., Kumar, A., Standiford, T. J. and Yu, F. S., Interferon regulatory factor‐1 in flagellin‐induced reprogramming: potential protective role of CXCL10 in cornea innate defense against Pseudomonas aeruginosa infection. Invest. Ophthalmol. Vis. Sci. 2013. 54: 7510 – 7521.en_US
dc.identifier.citedreferenceMuller, M., Carter, S., Hofer, M. J. and Campbell, I. L., Review: The chemokine receptor CXCR3 and its ligands CXCL9, CXCL10 and CXCL11 in neuroimmunity—a tale of conflict and conundrum. Neuropathol. Appl. Neurobiol. 2010. 36: 368 – 387.en_US
dc.identifier.citedreferenceCrawford, M. A., Burdick, M. D., Glomski, I. J., Boyer, A. E., Barr, J. R., Mehrad, B., Strieter, R. M. et al., Interferon‐inducible CXC chemokines directly contribute to host defense against inhalational anthrax in a murine model of infection. PLoS Pathog. 2010. 6: e1001199.en_US
dc.identifier.citedreferenceCrawford, M. A., Zhu, Y., Green, C. S., Burdick, M. D., Sanz, P., Alem, F., O'Brien, A. D. et al., Antimicrobial effects of interferon‐inducible CXC chemokines against Bacillus anthracis spores and bacilli. Infect. Immun. 2009. 77: 1664 – 1678.en_US
dc.identifier.citedreferenceKolar, S. S., Baidouri, H., Hanlon, S. and McDermott, A. M., Protective role of murine beta‐defensins 3 and 4 and cathelin‐related antimicrobial peptide in Fusarium solani keratitis. Infect. Immun. 2013. 81: 2669 – 2677.en_US
dc.identifier.citedreferenceYuan, X., Hua, X. and Wilhelmus, K. R., The corneal expression of antimicrobial peptides during experimental fungal keratitis. Curr. Eye Res. 2010. 35: 872 – 879.en_US
dc.identifier.citedreferenceColonna, M., Trinchieri, G. and Liu, Y. J., Plasmacytoid dendritic cells in immunity. Nat. Immunol. 2004. 5: 1219 – 1226.en_US
dc.identifier.citedreferenceCarr, D. J., Wuest, T. and Ash, J., An increase in herpes simplex virus type 1 in the anterior segment of the eye is linked to a deficiency in NK cell infiltration in mice deficient in CXCR3. J. Interferon Cytokine Res. 2008. 28: 245 – 251.en_US
dc.identifier.citedreferenceWuest, T. R. and Carr, D. J., Dysregulation of CXCR3 signaling due to CXCL10 deficiency impairs the antiviral response to herpes simplex virus 1 infection. J. Immunol. 2008. 181: 7985 – 7993.en_US
dc.identifier.citedreferenceVoigt, J., Hunniger, K., Bouzani, M., Jacobsen, I. D., Barz, D., Hube, B., Loffler, J. and Kurzai, O., Human NK cells act as phagocytes against Candida albicans and mount an inflammatory response which modulates neutrophil antifungal activity. J. Infect. Dis. 2014. 209: 616 – 626.en_US
dc.identifier.citedreferenceHall, L. J., Murphy, C. T., Quinlan, A., Hurley, G., Shanahan, F., Nally, K. and Melgar, S., Natural killer cells protect mice from DSS‐induced colitis by regulating neutrophil function via the NKG2A receptor. Mucosal Immunol. 2013. 6: 1016 – 1026.en_US
dc.identifier.citedreferenceThoren, F. B., Riise, R. E., Ousback, J., Della Chiesa, M., Alsterholm, M., Marcenaro, E., Pesce, S. et al., Human NK cells induce neutrophil apoptosis via an NKp46‐ and Fas‐dependent mechanism. J. Immunol. 2012. 188: 1668 – 1674.en_US
dc.identifier.citedreferenceLi, Z., Burns, A. R., Rumbaut, R. E. and Smith, C. W., Gamma delta T cells are necessary for platelet and neutrophil accumulation in limbal vessels and efficient epithelial repair after corneal abrasion. Am. J. Pathol. 2007. 171: 838 – 845.en_US
dc.identifier.citedreferenceLiu, Q., Smith, C. W., Zhang, W., Burns, A. R. and Li, Z., NK cells modulate the inflammatory response to corneal epithelial abrasion and thereby support wound healing. Am. J. Pathol. 2012. 181: 452 – 462.en_US
dc.identifier.citedreferenceTaylor, P. R., Leal, S. M., Jr., Sun, Y. and Pearlman, E., Aspergillus and Fusarium corneal infections are regulated by Th17 cells and IL‐17‐producing neutrophils. J. Immunol. 2014. 192: 3319 – 3327.en_US
dc.identifier.citedreferenceTaylor, P. R., Roy, S., Leal, S. M., Jr., Sun, Y., Howell, S. J., Cobb, B. A., Li, X. et al., Activation of neutrophils by autocrine IL‐17A‐IL‐17RC interactions during fungal infection is regulated by IL‐6, IL‐23, RORgammat and dectin‐2. Nat. Immunol. 2014. 15: 143 – 151.en_US
dc.identifier.citedreferenceZhang, J., Xu, K., Ambati, B. and Yu, F. S., Toll‐like receptor 5‐mediated corneal epithelial inflammatory responses to Pseudomonas aeruginosa flagellin. Invest. Ophthalmol. Vis. Sci. 2003. 44: 4247 – 4254.en_US
dc.identifier.citedreferenceKumar, A., Hazlett, L. D. and Yu, F. S., Flagellin suppresses the inflammatory response and enhances bacterial clearance in a murine model of Pseudomonas aeruginosa keratitis. Infect. Immun. 2008. 76: 89 – 96.en_US
dc.identifier.citedreferenceWu, T. G., Wilhelmus, K. R. and Mitchell, B. M., Experimental keratomycosis in a mouse model. Invest. Ophthalmol. Vis. Sci. 2003. 44: 210 – 216.en_US
dc.identifier.citedreferenceRheinwald, J. G., Hahn, W. C., Ramsey, M. R., Wu, J. Y., Guo, Z., Tsao, H., De Luca, M. et al., A two‐stage, p16(INK4A)‐ and p53‐dependent keratinocyte senescence mechanism that limits replicative potential independent of telomere status. Mol. Cell. Biol. 2002. 22: 5157 – 5172.en_US
dc.identifier.citedreferenceThomas, P. A., Fungal infections of the cornea. Eye (Lond.) 2003. 17: 852 – 862.en_US
dc.identifier.citedreferenceThomas, P. A. and Geraldine, P., Infectious keratitis. Curr. Opin. Infect. Dis. 2007. 20: 129 – 141.en_US
dc.identifier.citedreferenceJackson, B. E., Wilhelmus, K. R. and Mitchell, B. M., Genetically regulated filamentation contributes to Candida albicans virulence during corneal infection. Microb. Pathog. 2007. 42: 88 – 93.en_US
dc.identifier.citedreferenceGalarreta, D. J., Tuft, S. J., Ramsay, A. and Dart, J. K., Fungal keratitis in London: microbiological and clinical evaluation. Cornea 2007. 26: 1082 – 1086.en_US
dc.identifier.citedreferenceRitterband, D. C., Seedor, J. A., Shah, M. K., Koplin, R. S. and McCormick, S. A., Fungal keratitis at the New York eye and ear infirmary. Cornea 2006. 25: 264 – 267.en_US
dc.identifier.citedreferenceChern, K. C., Meisler, D. M., Wilhelmus, K. R., Jones, D. B., Stern, G. A. and Lowder, C. Y., Corneal anesthetic abuse and Candida keratitis. Ophthalmology 1996. 103: 37 – 40.en_US
dc.identifier.citedreferenceGorscak, J. J., Ayres, B. D., Bhagat, N., Hammersmith, K. M., Rapuano, C. J., Cohen, E. J., Burday, M. et al., An outbreak of Fusarium keratitis associated with contact lens use in the northeastern United States. Cornea 2007. 26: 1187 – 1194.en_US
dc.identifier.citedreferencePatel, A. and Hammersmith, K., Contact lens‐related microbial keratitis: recent outbreaks. Curr. Opin. Ophthalmol. 2008. 19: 302 – 306.en_US
dc.identifier.citedreferenceFlorCruz, N. V., Peczon, I. V. and Evans, J. R., Medical interventions for fungal keratitis. Cochrane Database Syst. Rev. 2012. 2: CD004241.en_US
dc.identifier.citedreferenceTarabishy, A. B., Aldabagh, B., Sun, Y., Imamura, Y., Mukherjee, P. K., Lass, J. H., Ghannoum, M. A. et al., MyD88 regulation of Fusarium keratitis is dependent on TLR4 and IL‐1R1 but not TLR2. J. Immunol. 2008. 181: 593 – 600.en_US
dc.identifier.citedreferenceYuan, X. and Wilhelmus, K. R., Toll‐like receptors involved in the pathogenesis of experimental Candida albicans keratitis. Invest. Ophthalmol. Vis. Sci. 2010. 51: 2094 – 2100.en_US
dc.identifier.citedreferenceJackson, B. E., Wilhelmus, K. R. and Mitchell, B. M., Genetically regulated filamentation contributes to Candida albicans virulence during corneal infection. Microb. Pathog. 2007. 42: 88 – 93.en_US
dc.identifier.citedreferenceYuan, X., Mitchell, B. M. and Wilhelmus, K. R., Gene profiling and signaling pathways of Candida albicans keratitis. Mol. Vis. 2008. 14: 1792 – 1798.en_US
dc.identifier.citedreferenceGao, N., Kumar, A., Guo, H., Wu, X., Wheater, M. and Yu, F. S., Topical flagellin‐mediated innate defense against Candida albicans keratitis. Invest. Ophthalmol. Vis. Sci. 2011. 52: 3074 – 3082.en_US
dc.identifier.citedreferenceKumar, A., Yin, J., Zhang, J. and Yu, F. S., Modulation of corneal epithelial innate immune response to pseudomonas infection by flagellin pretreatment. Invest. Ophthalmol. Vis. Sci. 2007. 48: 4664 – 4670.en_US
dc.identifier.citedreferenceGao, N., Kumar, A., Jyot, J. and Yu, F. S., Flagellin‐induced corneal antimicrobial peptide production and wound repair involve a novel NF‐kappaB‐independent and EGFR‐dependent pathway. PLoS One 2010. 5: e9351.en_US
dc.identifier.citedreferenceGao, N., Sang Yoon, G., Liu, X., Mi, X., Chen, W., Standiford, T. J. and Yu, F. S., Genome‐wide transcriptional analysis of differentially expressed genes in flagellin‐pretreated mouse corneal epithelial cells in response to Pseudomonas aeruginosa: involvement of S100A8/A9. Mucosal Immunol. 2013. 6: 993 – 1005.en_US
dc.identifier.citedreferenceOppenheim, J. J., Tewary, P., de la Rosa, G. and Yang, D., Alarmins initiate host defense. Adv. Exp. Med. Biol. 2007. 601: 185 – 194.en_US
dc.identifier.citedreferenceKumar, A., Gao, N., Standiford, T. J., Gallo, R. L. and Yu, F. S., Topical flagellin protects the injured corneas from Pseudomonas aeruginosa infection. Microbes Infect. 2010. 12: 978 – 989.en_US
dc.identifier.citedreferenceLeal, S. M., Jr., Cowden, S., Hsia, Y. C., Ghannoum, M. A., Momany, M. and Pearlman, E., Distinct roles for dectin‐1 and TLR4 in the pathogenesis of Aspergillus fumigatus keratitis. PLoS Pathog. 2010. 6: e1000976.en_US
dc.identifier.citedreferenceSun, Y., Karmakar, M., Roy, S., Ramadan, R. T., Williams, S. R., Howell, S., Shive, C. L. et al., TLR4 and TLR5 on corneal macrophages regulate Pseudomonas aeruginosa keratitis by signaling through MyD88‐dependent and ‐independent pathways. J. Immunol. 2010. 185: 4272 – 4283.en_US
dc.identifier.citedreferenceYoon, G. S., Dong, C., Gao, N., Kumar, A., Standiford, T. J. and Yu, F. S., Interferon regulatory factor‐1 in flagellin‐induced reprogramming: protective role of CXCL10 in cornea innate defense against Pseudomonas infection. Invest. Ophthalmol. Vis. Sci. 2013. 54: 7510 – 7521.en_US
dc.identifier.citedreferenceCole, A. M., Ganz, T., Liese, A. M., Burdick, M. D., Liu, L. and Strieter, R. M., Cutting edge: IFN‐inducible ELR‐ CXC chemokines display defensin‐like antimicrobial activity. J. Immunol. 2001. 167: 623 – 627.en_US
dc.identifier.citedreferenceQin, S., Rottman, J. B., Myers, P., Kassam, N., Weinblatt, M., Loetscher, M., Koch, A. E. et al., The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J. Clin. Invest. 1998. 101: 746 – 754.en_US
dc.identifier.citedreferenceCao, W. and Liu, Y. J., Innate immune functions of plasmacytoid dendritic cells. Curr. Opin. Immunol. 2007. 19: 24 – 30.en_US
dc.identifier.citedreferenceMohan, K., Cordeiro, E., Vaci, M., McMaster, C. and Issekutz, T. B., CXCR3 is required for migration to dermal inflammation by normal and in vivo activated T cells: differential requirements by CD4 and CD8 memory subsets. Eur. J. Immunol. 2005. 35: 1702 – 1711.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.