Show simple item record

Structure and dynamics of Mercury's magnetospheric cusp: MESSENGER measurements of protons and planetary ions

dc.contributor.authorRaines, Jim M.en_US
dc.contributor.authorGershman, Daniel J.en_US
dc.contributor.authorSlavin, James A.en_US
dc.contributor.authorZurbuchen, Thomas H.en_US
dc.contributor.authorKorth, Hajeen_US
dc.contributor.authorAnderson, Brian J.en_US
dc.contributor.authorSolomon, Sean C.en_US
dc.date.accessioned2014-10-07T16:09:58Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2014-10-07T16:09:58Z
dc.date.issued2014-08en_US
dc.identifier.citationRaines, Jim M.; Gershman, Daniel J.; Slavin, James A.; Zurbuchen, Thomas H.; Korth, Haje; Anderson, Brian J.; Solomon, Sean C. (2014). "Structure and dynamics of Mercury's magnetospheric cusp: MESSENGER measurements of protons and planetary ions." Journal of Geophysical Research: Space Physics 119(8): 6587-6602.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108701
dc.description.abstractThe MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft has observed the northern magnetospheric cusp of Mercury regularly since the probe was inserted into orbit about the innermost planet in March 2011. Observations from the Fast Imaging Plasma Spectrometer (FIPS) made at altitudes < 400 km in the planet's cusp have shown average proton densities (>10 cm −3 ) that are exceeded only by those observed in the magnetosheath. These high plasma densities are also associated with strong diamagnetic depressions observed by MESSENGER's Magnetometer. Plasma in the cusp may originate from several sources: (1) Direct inflow from the magnetosheath, (2) locally produced planetary photoions and ions sputtered off the surface from solar wind impact and then accelerated upward, and (3) flow of magnetosheath and magnetospheric plasma accelerated from dayside reconnection X‐lines. We surveyed 518 cusp passes by MESSENGER, focusing on the spatial distribution, energy spectra, and pitch‐angle distributions of protons and Na + ‐group ions. Of those, we selected 77 cusp passes during which substantial Na + ‐group ion populations were present for a more detailed analysis. We find that Mercury's cusp is a highly dynamic region, both in spatial extent and plasma composition and energies. From the three‐dimensional plasma distributions observed by FIPS, protons with mean energies of 1 keV were found flowing down into the cusp (i.e., source (1) above). The distribution of pitch angles of these protons showed a depletion in the direction away from the surface, indicating that ions within 40° of the magnetic field direction are in the loss cone, lost to the surface rather than being reflected by the magnetic field. In contrast, Na + ‐group ions show two distinct behaviors depending on their energy. Low‐energy (100–300 eV) ions appear to be streaming out of the cusp, showing pitch‐angle distributions with a strong component antiparallel to the magnetic field (away from the surface). These ions appear to have been generated in the cusp and accelerated locally (i.e., source (2) above). Higher‐energy (≥1 keV) Na + ‐group ions in the cusp exhibit much larger perpendicular components in their energy distributions. During active times, as judged by frequent, large‐amplitude magnetic field fluctuations, many more Na + ‐group ions are measured at latitudes south of the cusp. In several cases, these Na + ‐group ions in the dayside magnetosphere are flowing northward toward the cusp. The high mean energy, pitch‐angle distributions, and large number of Na + ‐group ions on dayside magnetospheric field lines are inconsistent with direct transport into the cusp of sputtered ions from the surface or newly photoionized particles. Furthermore, the highest densities and mean energies often occur together with high‐amplitude magnetic fluctuations, attributed to flux transfer events along the magnetopause. These results indicate that high‐energy Na + ‐group ions in the cusp are likely formed by ionization of escaping neutral Na in the outer dayside magnetosphere and the magnetosheath followed by acceleration and transport into the cusp by reconnection at the subsolar magnetopause (i.e., source 3 above). Key Points Reconnection sweeps high‐energy Na + ‐group ions into the cusp from outside Low‐energy Na + ‐group ions were observed upwelling from the cusp Protons flowing into the cusp show >40° loss cone in the reflected directionen_US
dc.publisherUniv. Arizona Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherPlasma Compositionen_US
dc.subject.otherCuspen_US
dc.subject.otherMercuryen_US
dc.subject.otherPlanetary Magnetosphereen_US
dc.titleStructure and dynamics of Mercury's magnetospheric cusp: MESSENGER measurements of protons and planetary ionsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108701/1/jgra51154.pdf
dc.identifier.doi10.1002/2014JA020120en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceHaerendel, G., G. Paschmann, N. Sckopke, and H. Rosenbauer ( 1978 ), The frontside boundary layer of the magnetosphere and the problem of reconnection, J. Geophys. Res., 83, 3195 – 3216, doi: 10.1029/JA083iA07p03195.en_US
dc.identifier.citedreferenceMilillo, A., et al. ( 2005 ), Surface‐exosphere‐magnetosphere system of Mercury, Space Sci. Rev., 117, 397 – 443, doi: 10.1007/s11214‐005‐3593‐z.en_US
dc.identifier.citedreferenceMoebius, E., D. Hovestadt, B. Klecker, M. Scholer, and G. Gloeckler ( 1985 ), Direct observation of He + pick‐up ions of interstellar origin in the solar wind, Nature, 318, 426 – 429, doi: 10.1038/318426a0.en_US
dc.identifier.citedreferenceNewell, P. T., and C.‐I. Meng ( 1988 ), Hemispherical asymmetry in cusp precipitation near solstices, J. Geophys. Res., 94, 2643 – 2648, doi: 10.1029/JA093iA04p02643.en_US
dc.identifier.citedreferencePaschmann, G., G. Haerendel, N. Sckopke, H. Rosenbauer, and P. C. Hedgecock ( 1976 ), Plasma and magnetic field characteristics of the distant polar cusp near local noon: The entry layer, J. Geophys. Res., 81, 2883 – 2899, doi: 10.1029/JA081i016p02883.en_US
dc.identifier.citedreferenceRaines, J. M., J. A. Slavin, T. H. Zurbuchen, G. Gloeckler, B. J. Anderson, D. N. Baker, H. Korth, S. M. Krimigis, and R. L. McNutt Jr. ( 2011 ), MESSENGER observations of the plasma environment near Mercury, Planet. Space Sci., 59, 2004 – 2015, doi: 10.1016/j.pss.2011.02.004.en_US
dc.identifier.citedreferenceRaines, J. M., et al. ( 2013 ), Distribution and compositional variations of plasma ions in Mercury's space environment: The first three Mercury years of MESSENGER observations, J. Geophys. Res. Space Physics, 118, 1604 – 1619, doi: 10.1029/2012JA018073.en_US
dc.identifier.citedreferenceRetterer, J. M., T. Chang, and J. R. Jasperse ( 1983 ), Ion acceleration in the suprauroral region: A Monte Carlo model, Geophys. Res. Lett., 10, 583 – 586, doi: 10.1029/GL010i007p00583.en_US
dc.identifier.citedreferenceRosenbauer, H., H. Gruenwaldt, M. D. Montgomery, G. Paschmann, and N. Sckopke ( 1975 ), Heos 2 plasma observations in the distant polar magnetosphere: The plasma mantle, J. Geophys. Res., 80, 2723 – 2737, doi: 10.1029/JA080i019p02723.en_US
dc.identifier.citedreferenceRoth, I., and M. K. Hudson ( 1985 ), Lower hybrid heating of ionospheric ions due to ion ring distributions in cusp, J. Geophys. Res., 90, 4191 – 4203, doi: 10.1029/JA090iA05p04191.en_US
dc.identifier.citedreferenceSarantos, M., J. A. Slavin, M. Benna, S. A. Boardsen, R. M. Killen, D. Schriver, and P. Trávníček ( 2009 ), Sodium‐ion pickup observed above the magnetopause during MESSENGER's first Mercury flyby: Constraints on neutral exospheric models, Geophys. Res. Lett., 36, L04107, doi: 10.1029/2008GL036747.en_US
dc.identifier.citedreferenceShue, J. H., J. K. Chao, H. C. Fu, C. T. Russell, P. Song, K. K. Khurana, and H. J. Singer ( 1997 ), A new functional form to study the solar wind control of the magnetopause size and shape, J. Geophys. Res., 102, 9497 – 9511, doi: 10.1029/97JA00196.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2008 ), Mercury's magnetosphere after MESSENGER's first flyby, Science, 321, 85 – 89, doi: 10.1126/science.1159040.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2010 ), MESSENGER observations of extreme loading and unloading of Mercury's magnetic tail, Science, 329, 665 – 668, doi: 10.1126/science.1188067.en_US
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2012 ), MESSENGER observations of a flux‐transfer‐event shower at Mercury, J. Geophys. Res., 117, A00M06, doi: 10.1029/2012JA017926.en_US
dc.identifier.citedreferenceSmith, M. F., and M. Lockwood ( 1996 ), Earth's magnetospheric cusps, Rev. Geophys., 34, 233 – 260, doi: 10.1029/96RG00893.en_US
dc.identifier.citedreferenceSolomon, S. C., R. L. McNutt Jr., R. E. Gold, and D. L. Domingue ( 2007 ), MESSENGER mission overview, Space Sci. Rev., 131, 3 – 39, doi: 10.1007/s11214‐007‐9247‐6.en_US
dc.identifier.citedreferenceSonnerup, B. U. Ö. ( 1974 ), Magnetopause reconnection rate, J. Geophys. Res., 79, 1546 – 1549, doi: 10.1029/JA079i010p01546.en_US
dc.identifier.citedreferenceSonnerup, B. U. Ö., G. Paschmann, I. Papmastorakis, N. Sckopke, G. Haerendel, S. J. Bame, J. R. Asbridge, J. T. Gosling, and C. T. Russell ( 1981 ), Evidence for magnetic field reconnection at the Earth's magnetopause, J. Geophys. Res., 86, 10,049 – 10,067, doi: 10.1029/JA086iA12p10049.en_US
dc.identifier.citedreferenceSpreiter, J. R., A. L. Summers, and A. Y. Alksne ( 1966 ), Hydromagnetic flow around the magnetosphere, Planet. Space Sci., 14, 223 – 253, doi: 10.1016/0032‐0633(66)90124‐3.en_US
dc.identifier.citedreferenceSundberg, T., et al. ( 2012 ), MESSENGER observations of dipolarization events in Mercury's magnetotail, J. Geophys. Res., 117, A00M03, doi: 10.1029/2012JA017756.en_US
dc.identifier.citedreferenceVervack, R. J., Jr., W. E. McClintock, R. M. Killen, A. L. Sprague, B. J. Anderson, M. H. Burger, E. T. Bradley, N. Mouawad, S. C. Solomon, and N. R. Izenberg ( 2010 ), Mercury's complex exosphere: Results from MESSENGER's third flyby, Science, 329, 672 – 675, doi: 10.1126/science.1188572.en_US
dc.identifier.citedreferenceWinslow, R. M., C. L. Johnson, B. J. Anderson, H. Korth, J. A. Slavin, M. E. Purucker, and S. C. Solomon ( 2012 ), Observations of Mercury's northern cusp region with MESSENGER's Magnetometer, Geophys. Res. Lett., 39, L08112, doi: 10.1029/2012GL051472.en_US
dc.identifier.citedreferenceWinslow, R. M., B. J. Anderson, C. L. Johnson, J. A. Slavin, H. Korth, M. E. Purucker, D. N. Baker, and S. C. Solomon ( 2013 ), Mercury's magnetopause and bow shock from MESSENGER Magnetometer observations, J. Geophys. Res. Space Physics, 118, 2213 – 2227, doi: 10.1002/jgra.50237.en_US
dc.identifier.citedreferenceZurbuchen, T. H., G. Gloeckler, J. C. Cain, S. E. Lasley, and W. Shanks ( 1998 ), A low‐weight plasma instrument to be used in the inner heliosphere, in Conference on Missions to the Sun II, Proc. Soc. Photo‐Opt. Instrum. Eng. (SPIE), vol. 3442, edited by C. M. Korendyke, pp. 217 – 224, doi: 10.1117/12.330260.en_US
dc.identifier.citedreferenceZurbuchen, T. H., et al. ( 2011 ), MESSENGER observations of the spatial distribution of planetary ions near Mercury, Science, 333, 1862 – 1865, doi: 10.1126/science.1211302.en_US
dc.identifier.citedreferenceAlexeev, I. I., E. S. Belenkaya, S. Y. Bobrovnikov, J. A. Slavin, and M. Sarantos ( 2008 ), Paraboloid model of Mercury's magnetosphere, J. Geophys. Res., 113, A12210, doi: 10.1029/2008JA013368.en_US
dc.identifier.citedreferenceAlexeev, I. I., et al. ( 2010 ), Mercury's magnetospheric magnetic field after the first two MESSENGER flybys, Icarus, 209, 23 – 39, doi: 10.1016/j.icarus.2010.01.024.en_US
dc.identifier.citedreferenceAnderson, B. J., M. H. Acuña, D. A. Lohr, J. Scheifele, A. Raval, H. Korth, and J. A. Slavin ( 2007 ), The Magnetometer instrument on MESSENGER, Space Sci. Rev., 131, 417 – 450, doi: 10.1007/s11214‐007‐9246‐7.en_US
dc.identifier.citedreferenceAndrews, G. B., et al. ( 2007 ), The energetic particle and plasma spectrometer instrument on the MESSENGER spacecraft, Space Sci. Rev., 131, 523 – 556, doi: 10.1007/s11214‐007‐9272‐5.en_US
dc.identifier.citedreferenceAshour‐Abdalla, M., H. Okuda, and C. Z. Cheng ( 1981 ), Acceleration of heavy ions on auroral field lines, Geophys. Res. Lett., 8, 795 – 798, doi: 10.1029/GL008i007p00795.en_US
dc.identifier.citedreferenceBurger, M. H., R. M. Killen, W. E. McClintock, R. J. Vervack Jr., A. W. Merkel, A. L. Sprague, and M. Sarantos ( 2012 ), Modeling MESSENGER observations of calcium in Mercury's exosphere, J. Geophys. Res., 117, E00L11, doi: 10.1029/2012JE004158.en_US
dc.identifier.citedreferenceCassidy, T. A., and R. E. Johnson ( 2005 ), Monte Carlo model of sputtering and other ejection processes within a regolith, Icarus, 176, 499 – 507, doi: 10.1016/j.icarus.2005.02.013.en_US
dc.identifier.citedreferenceCowley, S. W. H., and C. J. Owen ( 1989 ), A simple illustrative model of open flux tube motion over the dayside magnetopause, Planet. Space Sci., 37, 1461 – 1475, doi: 10.1016/0032‐0633(89)90116‐5.en_US
dc.identifier.citedreferenceDelcourt, D. C., S. Grimald, F. Leblanc, J. J. Berthelier, A. Millilo, A. Mura, S. Orsini, and T. E. Moore ( 2003 ), A quantitative model of the planetary Na + contribution to Mercury's magnetosphere, Ann. Geophys., 21, 1723 – 1736, doi: 10.5194/angeo‐21‐1723‐2003.en_US
dc.identifier.citedreferenceDelcourt, D. C., K. Seki, N. Terada, and T. E. Moore ( 2012 ), Centrifugally stimulated exospheric ion escape at Mercury, Geophys. Res. Lett., 39, L22105, doi: 10.1029/2012GL054085.en_US
dc.identifier.citedreferenceDiBraccio, G. A., J. A. Slavin, S. A. Boardsen, B. J. Anderson, H. Korth, T. H. Zurbuchen, J. M. Raines, D. N. Baker, R. L. McNutt Jr., and S. C. Solomon ( 2013 ), MESSENGER observations of magnetopause structure and dynamics at Mercury, J. Geophys. Res. Space Physics, 118, 997 – 1008, doi: 10.1002/jgra.50123.en_US
dc.identifier.citedreferenceDungey, J. W. ( 1961 ), Interplanetary magnetic field and auroral zones, Phys. Rev. Lett., 6, 47 – 48, doi: 10.1103/PhysRevLett.6.47.en_US
dc.identifier.citedreferenceGershman, D. J., G. Gloeckler, J. A. Gilbert, J. M. Raines, L. A. Fisk, S. C. Solomon, E. C. Stone, and T. H. Zurbuchen ( 2013a ), Observations of interstellar helium pickup ions in the inner heliosphere, J. Geophys. Res. Space Physics, 118, 1389 – 1402, doi: 10.1002/jgra.50227.en_US
dc.identifier.citedreferenceGershman, D. J., J. A. Slavin, J. M. Raines, T. H. Zurbuchen, B. J. Anderson, H. Korth, D. N. Baker, and S. C. Solomon ( 2013b ), Magnetic flux pile‐up and plasma depletion layers in Mercury's subsolar magnetosheath, J. Geophys. Res. Space Physics, 118, 7181 – 7199, doi: 10.1002/2013JA019244.en_US
dc.identifier.citedreferenceGershman, D. J., L. A. Fisk, G. Gloeckler, J. M. Raines, J. A. Slavin, T. H. Zurbuchen, and S. C. Solomon ( 2014 ), The velocity distribution of pickup He + measured at 0.3 AU by MESSENGER, Astrophys. J., 788, 124, doi: 10.1088/0004‐637X/788/2/124.en_US
dc.identifier.citedreferenceHorwitz, J. L. ( 1984 ), Features of ion trajectories in the polar magnetosphere, Geophys. Res. Lett., 11, 1111 – 1114, doi: 10.1029/GL011i011p01111.en_US
dc.identifier.citedreferenceHorwitz, J. L., and M. Lockwood ( 1985 ), The cleft ion fountain: A two‐dimensional kinetic model, J. Geophys. Res., 90, 9749 – 9762, doi: 10.1029/JA090iA10p09749.en_US
dc.identifier.citedreferenceHunten, D. M., T. H. Morgan, and D. E. Shemansky ( 1988 ), The Mercury atmosphere, in Mercury, edited by F. Vilas, C. R. Chapman, and M. S. Matthews, pp. 562 – 612, Univ. Arizona Press, Tucson, Ariz.en_US
dc.identifier.citedreferenceJohnson, R. E. ( 1994 ), Plasma‐induced sputtering of an atmosphere, Space Sci. Rev., 69, 215 – 253, doi: 10.1007/BF02101697.en_US
dc.identifier.citedreferenceKabin, K., T. I. Gombosi, D. L. DeZeeuw, and K. G. Powell ( 2000 ), Interaction of Mercury with the solar wind, Icarus, 143, 397 – 406, doi: 10.1006/icar.1999.6252.en_US
dc.identifier.citedreferenceKallio, E., and P. Janhunen ( 2003 ), Solar wind and magnetospheric ion impact on Mercury's surface, Geophys. Res. Lett., 30 ( 17 ), 1877, doi: 10.1029/2003GL017842.en_US
dc.identifier.citedreferenceKallio, E., et al. ( 2008 ), On the impact of multiply charged heavy solar wind ions on the surface of Mercury, the Moon and Ceres, Planet. Space Sci., 56, 1506 – 1516, doi: 10.1016/j.pss.2008.07.018.en_US
dc.identifier.citedreferenceKorth, H., B. J. Anderson, J. M. Raines, J. A. Slavin, T. H. Zurbuchen, C. L. Johnson, M. E. Purucker, R. M. Winslow, S. C. Solomon, and R. L. McNutt Jr. ( 2011 ), Plasma pressure in Mercury's equatorial magnetosphere derived from MESSENGER Magnetometer observations, Geophys. Res. Lett., 38, L22201, doi: 10.1029/2011GL049451.en_US
dc.identifier.citedreferenceKorth, H., B. J. Anderson, C. L. Johnson, R. M. Winslow, J. A. Slavin, M. E. Purucker, S. C. Solomon, and R. L. McNutt Jr. ( 2012 ), Characteristics of the plasma distribution in Mercury's equatorial magnetosphere derived from MESSENGER Magnetometer observations, J. Geophys. Res., 117, A00M07, doi: 10.1029/2012JA018052.en_US
dc.identifier.citedreferenceLammer, H., P. Wurz, M. R. Patel, R. Killen, C. Kolb, S. Massetti, S. Orsini, and A. Milillo ( 2003 ), The variability of Mercury's exosphere by particle and radiation induced surface release processes, Icarus, 166, 238 – 247, doi: 10.1016/j.icarus.2003.08.012.en_US
dc.identifier.citedreferenceLavraud, B., et al. ( 2005 ), Cluster observes the high‐altitude cusp region, Surv. Geophys., 26, 135 – 175, doi: 10.1007/s10712‐005‐1875‐3.en_US
dc.identifier.citedreferenceLeblanc, F., and R. E. Johnson ( 2003 ), Mercury's sodium exosphere, Icarus, 164, 261 – 281, doi: 10.1016/S0019‐1035(03)00147‐7.en_US
dc.identifier.citedreferenceLeblanc, F., and R. E. Johnson ( 2010 ), Mercury exosphere, I. Global circulation model of its sodium component, Icarus, 209, 280 – 300, doi: 10.1016/j.icarus.2010.04.020.en_US
dc.identifier.citedreferenceLockwood, M., and M. F. Smith ( 1994 ), Low and middle altitude cusp particle signatures for general magnetopause reconnection rate variations. 1: Theory, J. Geophys. Res., 99, 8531 – 8553, doi: 10.1029/93JA03399.en_US
dc.identifier.citedreferenceLockwood, M., M. O. Chandler, J. L. Horwitz, J. H. Waite, T. E. Moore, and C. R. Chappell ( 1985 ), The cleft ion fountain, J. Geophys. Res., 90, 9736 – 9748, doi: 10.1029/JA090iA10p09736.en_US
dc.identifier.citedreferenceMassetti, S., S. Orsini, A. Milillo, A. Mura, E. De Angelis, H. Lammer, and P. Wurz ( 2003 ), Mapping of the cusp plasma precipitation on the surface of Mercury, Icarus, 166, 229 – 237, doi: 10.1016/j.icarus.2003.08.005.en_US
dc.identifier.citedreferenceMcClintock, W. E., and M. R. Lankton ( 2007 ), The Mercury Atmospheric and Surface Composition Spectrometer for the MESSENGER mission, Space Sci. Rev., 131, 481 – 521, doi: 10.1007/s11214‐007‐9264‐5.en_US
dc.identifier.citedreferenceMcLain, J. L., A. L. Sprague, G. A. Grieves, D. Schriver, P. Travinicek, and T. M. Orlando ( 2011 ), Electron‐stimulated desorption of silicates: A potential source for ions in Mercury's space environment, J. Geophys. Res., 116, E03007, doi: 10.1029/2010JE003714.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.