Show simple item record

Ultraviolet irradiation represses TGF ‐β type II receptor transcription through a 38‐bp sequence in the proximal promoter in human skin fibroblasts

dc.contributor.authorHe, Tianyuanen_US
dc.contributor.authorQuan, Taihaoen_US
dc.contributor.authorFisher, Gary J.en_US
dc.date.accessioned2014-10-07T16:09:58Z
dc.date.availableWITHHELD_13_MONTHSen_US
dc.date.available2014-10-07T16:09:58Z
dc.date.issued2014-10en_US
dc.identifier.citationHe, Tianyuan; Quan, Taihao; Fisher, Gary J. (2014). "Ultraviolet irradiation represses TGF ‐β type II receptor transcription through a 38‐bp sequence in the proximal promoter in human skin fibroblasts." Experimental Dermatology : 2-6.en_US
dc.identifier.issn0906-6705en_US
dc.identifier.issn1600-0625en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108702
dc.description.abstractTransforming growth factor‐β ( TGF ‐β) is a major regulator of collagen gene expression in human skin fibroblasts. Cellular responses to TGF ‐β are mediated primarily through its cell surface type I (TβRI) and type II (TβRII) receptors. Ultraviolet ( UV ) irradiation impairs TGF ‐β signalling largely due to reduced TβRII gene expression, thereby decreasing type I procollagen synthesis, in human skin fibroblasts. UV irradiation does not alter either TβRII m RNA or protein stability, indicating that UV reduction in TβRII expression likely results from transcriptional or translational repression. To understand how UV irradiation regulates TβRII transcription, we used a series of TβRII promoter‐luciferase 5′‐deletion constructs (covering 2 kb of the TβRII proximal promoter) to determine transcriptional rate in response to UV irradiation. We identified a 137‐bp region upstream of the transcriptional start site that exhibited high promoter activity and was repressed 60% by UV irradiation, whereas all other TβRII promoter reporter constructs exhibited either low promoter activities or no regulation by UV irradiation. Mutation of potential transcription factor binding sites within the promoter region revealed that an inverted CCAAT box (−81 bp from transcription start site) is required for promoter activity. Mutation of the CCAAT box completely abolished UV irradiation regulation of the TβRII promoter. Protein‐binding assay, as determined by electrophoretic mobility‐shift assays (EMSAs) using the inverted CCAAT box as probe (−100/−62), demonstrated significantly enhanced protein binding in response to UV irradiation. Super shift experiments indicated that nuclear factor Y ( NFY ) is able to binding to this sequence, but NFY binding was not altered in response to UV irradiation, indicating additional protein(s) are capable of binding this sequence in response to UV irradiation. Taken together, these data indicate that UV irradiation reduces TβRII expression, at least partially, through transcriptional repression. This repression is mediated by a 38‐bp sequence in TβRII promoter, in human skin fibroblasts.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherTGF ‐ßen_US
dc.subject.otherUltravioleten_US
dc.subject.otherTranscriptionen_US
dc.titleUltraviolet irradiation represses TGF ‐β type II receptor transcription through a 38‐bp sequence in the proximal promoter in human skin fibroblastsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelDentistryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108702/1/exd12389.pdf
dc.identifier.doi10.1111/exd.12389en_US
dc.identifier.sourceExperimental Dermatologyen_US
dc.identifier.citedreferenceSun L, Wu G, Willson J K et al. J Biol Chem 1994: 269: 26449 – 26455.en_US
dc.identifier.citedreferenceFisher G J, Datta S C, Talwar H S et al. Nature 1996: 379: 335 – 339.en_US
dc.identifier.citedreferenceBender K, Blattner C, Knebel A et al. J Photochem Photobiol, B 1997: 37: 1 – 17.en_US
dc.identifier.citedreferenceQuan T, He T, Voorhees J J et al. J Biol Chem 2001: 276: 26349 – 26356.en_US
dc.identifier.citedreferenceQuan T, He T, Kang S et al. Am J Pathol 2004: 165: 741 – 751.en_US
dc.identifier.citedreferenceQuan T, He T, Kang S et al. J Invest Dermatol 2002: 118: 402 – 408.en_US
dc.identifier.citedreferenceBae H W, Geiser A G, Kim D H et al. J Biol Chem 1995: 270: 29460 – 29468.en_US
dc.identifier.citedreferenceZhao S, Venkatasubbarao K, Li S et al. Cancer Res 2003: 63: 2624 – 2630.en_US
dc.identifier.citedreferenceQuan T, He T, Voorhees J J et al. J Biol Chem 2005: 280: 8079 – 8085.en_US
dc.identifier.citedreferenceBenatti P, Dolfini D, Vigano A et al. Nucleic Acids Res 2011: 39: 5356 – 5368.en_US
dc.identifier.citedreferenceQuan T, Qin Z, Xu Y et al. J Invest Dermatol 2010: 130: 1697 – 1706.en_US
dc.identifier.citedreferenceInagaki M, Moustakas A, Lin H Y et al. Proc Natl Acad Sci USA 1993: 90: 5359 – 5363.en_US
dc.identifier.citedreferenceMassague J, Chen Y G. Genes Dev 2000: 14: 627 – 644.en_US
dc.identifier.citedreferenceYu Y S, Suzuki Y, Yoshitomo K et al. Biochem Biophys Res Commun 1996: 225: 302 – 306.en_US
dc.identifier.citedreferenceBoucher P D, Ruch R J, Hines R N. J Biol Chem 1993: 268: 17384 – 17391.en_US
dc.identifier.citedreferenceXu Y, Banville D, Zhao H F et al. Gene 2001: 269: 141 – 153.en_US
dc.identifier.citedreferenceKelly D, Kim S J, Rizzino A. J Biol Chem 1998: 273: 21115 – 21124.en_US
dc.identifier.citedreferenceBernadt C T, Rizzino A. Mol Reprod Dev 2003: 65: 353 – 365.en_US
dc.identifier.citedreferencePark S H, Lee S R, Kim B C et al. J Biol Chem 2002: 277: 5168 – 5174.en_US
dc.identifier.citedreferenceJin S, Scotto K W. Mol Cell Biol 1998: 18: 4377 – 4384.en_US
dc.identifier.citedreferenceMaity S N, de Crombrugghe B. Trends Biochem Sci 1998: 23: 174 – 178.en_US
dc.identifier.citedreferenceMantovani R. Gene 1999: 239: 15 – 27.en_US
dc.identifier.citedreferenceLiu J X, Howell S H. Plant Cell 2010: 22: 782 – 796.en_US
dc.identifier.citedreferenceShi X, Metges C C, Seyfert H M. BMC Mol Biol 2012: 13: 21.en_US
dc.identifier.citedreferenceIto Y, Zhang Y, Dangaria S et al. Gene 2011: 473: 92 – 99.en_US
dc.identifier.citedreferenceDe Amicis F, Giordano F, Vivacqua A et al. FASEB J 2011: 25: 3695 – 3707.en_US
dc.identifier.citedreferenceBarberis A, Superti‐Furga G, Busslinger M. Cell 1987: 50: 347 – 359.en_US
dc.identifier.citedreferenceSuperti‐Furga G, Barberis A, Schaffner G et al. EMBO J 1988: 7: 3099 – 3107.en_US
dc.identifier.citedreferenceLuo W, Skalnik D G. J Biol Chem 1996: 271: 18203 – 18210.en_US
dc.identifier.citedreferenceEaglstein W H. Wound healing and aging. Dermatol Clin 1986: 4: 481 – 484.en_US
dc.identifier.citedreferenceHolt D R, Kirk S J, Regan M C et al. Surgery 1992: 112: 293 – 297; discussion 297–298.en_US
dc.identifier.citedreferenceKhorramizadeh M R, Tredget E E, Telasky C et al. Mol Cell Biochem 1999: 194: 99 – 108.en_US
dc.identifier.citedreferenceWeinstock M A. J Invest Dermatol 1994: 102: 4S – 5S.en_US
dc.identifier.citedreferenceMassague J. Annu Rev Biochem 1998: 67: 753 – 791.en_US
dc.identifier.citedreferenceMassague J, Blain S W, Lo R S. Cell 2000: 103: 295 – 309.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.