Show simple item record

Label-Free Optical Imaging and Quantitative Algorithms to Assess Living Biological Systems.

dc.contributor.authorChen, Leng-Chunen_US
dc.date.accessioned2014-10-13T18:19:37Z
dc.date.availableWITHHELD_12_MONTHSen_US
dc.date.available2014-10-13T18:19:37Z
dc.date.issued2014en_US
dc.date.submitted2014en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108858
dc.description.abstractNon-perturbing tools that provide reliable, information-rich assessments of living biological systems can inform clinical practice and improve patient health. In this dissertation, we developed label-free nonlinear optical molecular imaging to provide spatially-resolved, non-perturbing, quantitative functional assessments of 1) living cell lines, 2) primary human cells, and 3) tissue-engineered constructs manufactured with primary cells. Quantitative analytic methods were developed to account for the high inter-patient variability in primary human cells freshly harvested from distinct donors. The FDA strictly regulates the manufacture of tissue-engineered constructs, requiring assessment of product effectiveness and safety prior to release for patient treatment. We addressed this clinical need by developing quantitative methods to assess local tissue structure and biochemistry using label-free nonlinear optical molecular microscopy. Optical measures characterized morphologic and functional differences between controls and stressed constructs. Rigorous statistical analysis accounted for variability between patients. The technique reliably differentiated controls from stressed constructs from 10 batches/patients with P-value < 0.01. Further, the optical metrics strongly correlated with a standard WST-1 cell viability assay (P-values < 0.001 for 5 batches/patients). Unlike the standard methods, which are reliable but destructive, label-free optical assessments are both non-invasive and reliable. Thus, such optical measures could serve as reliable manufacturing release criteria for cell-based tissue-engineered constructs prior to human implantation. Label-free fluorescence lifetime imaging microscopy (FLIM) images consist of spatial and temporal information. The traditional method to analyze FLIM is iterative fitting, which is time-consuming and requires prior knowledge of the sample. Clinical practitioners require an analytical and simple-to-operate method to interpret FLIM images. Thus, extended phasor analysis algorithms were developed. The algorithms characterized tissue constituents with better differentiation (P-value < 0.001 for 5 batches/patients) than the standard fitting method (P-value = 0.048 for 5 batches/patients). In addition, time-gated FLIM with various gating schemes was analyzed with the developed phasor analysis algorithms to monitor intracellular lifetime variation. In summary, the developed algorithms could advance future FLIM applications in clinic.en_US
dc.language.isoen_USen_US
dc.subjectTissue Engineeringen_US
dc.subjectLabel-free Optical Molecular Imagingen_US
dc.subjectTissue Viabilityen_US
dc.subjectMultiphoton Excitation Microscopyen_US
dc.subjectSecond Harmonic Generation Imagingen_US
dc.subjectFluorescence Lifetime Imaging Microscopyen_US
dc.titleLabel-Free Optical Imaging and Quantitative Algorithms to Assess Living Biological Systems.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineBiomedical Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberMycek, Mary-Annen_US
dc.contributor.committeememberFeinberg, Stephen Elliotten_US
dc.contributor.committeememberStegemann, Jan Philipen_US
dc.contributor.committeememberMarcelo, Cynthia L.en_US
dc.subject.hlbsecondlevelBiomedical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108858/1/lengleng_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.