Show simple item record

Optimal Channel-Switching Strategies in Multi-channel Wireless Networks.

dc.contributor.authorWang, Qingsien_US
dc.date.accessioned2014-10-13T18:20:15Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2014-10-13T18:20:15Z
dc.date.issued2014en_US
dc.date.submitteden_US
dc.identifier.urihttps://hdl.handle.net/2027.42/108949
dc.description.abstractThe dual nature of scarcity and under-utilization of spectrum resources, as well as recent advances in software-defined radio, led to extensive study on the design of transceivers that are capable of opportunistic channel access. By allowing users to dynamically select which channel(s) to use for transmission, the overall throughput performance and the spectrum utilization of the system can in general be improved, compared to one with a single channel or more static channel allocations. The reason for such improvement lies in the exploitation of the underlying temporal, spatial, spectral and congestion diversity. In this dissertation, we focus on the channel-switching/hopping decision of a (group of) legitimate user(s) in a multi-channel wireless communication system, and study three closely related problems: 1) a jamming defense problem against a no-regret learning attacker, 2) a jamming defense problem with minimax (worst-case) optimal channel-switching strategies, and 3) the throughput optimal strategies for a group of competing users in IEEE 802.11-like medium access schemes. For the first problem we study the interaction between a user and an attacker from a learning perspective, where an online learner naturally adapts to the available information on the adversarial environment over time, and evolves its strategy with certain payoff guarantee. We show how the user can counter a strong learning attacker with knowledge on its learning rationale, and how the learning technique can itself be considered as a countermeasure with no such prior information. We further consider in the second problem the worst-case optimal strategy for the user without prior information on the attacking pattern, except that the attacker is subject to a resource constraint, which models its energy consumption and replenishment process. We provide explicit characterization for the optimal strategies and show the most damaging attacker, interestingly, behaves randomly in an i.i.d. fashion. In the last problem, we consider a group of competing users in a non-adversarial setting. We place the interaction among users in the context of IEEE 802.11-like medium access schemes, and derive decentralized channel allocation for overall throughput improvement. We show the typically rule-of-thumb load balancing principle in spectrum resource sharing can be indeed throughput optimal.en_US
dc.language.isoen_USen_US
dc.subjectChannel Allocationen_US
dc.subjectMulti-channel Communication Systemen_US
dc.subjectOnline Learningen_US
dc.subjectThroughput Optimalityen_US
dc.titleOptimal Channel-Switching Strategies in Multi-channel Wireless Networks.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineElectrical Engineering: Systemsen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberLiu, Mingyanen_US
dc.contributor.committeememberAbernethy, Jacoben_US
dc.contributor.committeememberTeneketzis, Demosthenisen_US
dc.contributor.committeememberAnastasopoulos, Achilleasen_US
dc.subject.hlbsecondlevelElectrical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/108949/1/qingsi_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.