Show simple item record

The Influence of Microstructure on the Deformation and Failure of Ultrafine-Grained Aluminum.

dc.contributor.authorKammers, Adam Daviden_US
dc.date.accessioned2014-10-13T18:20:52Z
dc.date.availableNO_RESTRICTIONen_US
dc.date.available2014-10-13T18:20:52Z
dc.date.issued2014en_US
dc.date.submitted2014en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/109026
dc.description.abstractUltrafine-grained (UFG) aluminum produced by equal channel angular pressing (ECAP) is considerably stronger than its coarse grained counterpart, while maintaining significant ductility. There have been a number of prior investigations into the material’s unique properties, yet the relationships between the heterogeneous microstructure and the microstructure-scale strain localization and active deformation mechanisms are not understood, motivating this work. This research investigates the effect of the material’s heterogeneous microstructure on strain accommodation and clarifies the relationship between macroscopic strain rate sensitivity and the ECAP processed microstructure. To carry out this research, a new experimental methodology combining scanning electron microscopy (SEM) and digital image correlation (DIC) was developed and utilized. We devised new nano-scale surface patterning techniques, improved SEM micrograph image distortion correction methodologies, and provided a better understanding of the effects of SEM imaging parameters on noise in DIC data. This work significantly improved this methodology and enabled highly accurate displacement measurements. Application of this experimental methodology to UFG 99.99% pure aluminum was used to characterize the relationships between the microstructure and active deformation mechanisms. Analysis of room temperature in-situ tension tests revealed that dislocation slip was the primary deformation mechanism in large grains and in grains separated by low angle grain boundaries. In regions of microstructure possessing ultrafine grains separated by high angle grain boundaries, strain localized primarily at grain boundaries. Grain boundary sliding was active at high angle grain boundaries separating distinct banded microstructure features. Variable strain rate experiments carried out at 200°C revealed the microstructural features responsible for the UFG 99.99% pure aluminum’s enhanced strain rate sensitivity. Dislocation slip, active in large grains and grains with similarly oriented slip systems, limited strain rate sensitivity. High angle grain boundaries, particularly those separating banded microstructure features, showed the greatest strain rate sensitivity.en_US
dc.language.isoen_USen_US
dc.subjectUltrafine-graineden_US
dc.subjectDeformation Mechanismsen_US
dc.subjectScanning Electron Microscopyen_US
dc.subjectDigital Image Correlationen_US
dc.subjectEqual Channel Angular Pressingen_US
dc.subjectAluminumen_US
dc.titleThe Influence of Microstructure on the Deformation and Failure of Ultrafine-Grained Aluminum.en_US
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineMechanical Engineeringen_US
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studiesen_US
dc.contributor.committeememberDaly, Samantha Hayesen_US
dc.contributor.committeememberJones, J. Wayneen_US
dc.contributor.committeememberThouless, Michaelen_US
dc.contributor.committeememberAllison, John Edmonden_US
dc.contributor.committeememberGarikipati, Krishnakumar R.en_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbsecondlevelMechanical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109026/1/akammers_1.pdf
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.