Show simple item record

Mars Science Laboratory relative humidity observations: Initial results

dc.contributor.authorHarri, A.‐m.en_US
dc.contributor.authorGenzer, M.en_US
dc.contributor.authorKemppinen, O.en_US
dc.contributor.authorGomez‐elvira, J.en_US
dc.contributor.authorHaberle, R.en_US
dc.contributor.authorPolkko, J.en_US
dc.contributor.authorSavijärvi, H.en_US
dc.contributor.authorRennó, N.en_US
dc.contributor.authorRodriguez‐manfredi, J. A.en_US
dc.contributor.authorSchmidt, W.en_US
dc.contributor.authorRichardson, M.en_US
dc.contributor.authorSiili, T.en_US
dc.contributor.authorPaton, M.en_US
dc.contributor.authorTorre‐juarez, M. De laen_US
dc.contributor.authorMäkinen, T.en_US
dc.contributor.authorNewman, C.en_US
dc.contributor.authorRafkin, S.en_US
dc.contributor.authorMischna, M.en_US
dc.contributor.authorMerikallio, S.en_US
dc.contributor.authorHaukka, H.en_US
dc.contributor.authorMartin‐torres, J.en_US
dc.contributor.authorKomu, M.en_US
dc.contributor.authorZorzano, M.‐p.en_US
dc.contributor.authorPeinado, V.en_US
dc.contributor.authorVazquez, L.en_US
dc.contributor.authorUrqui, R.en_US
dc.date.accessioned2014-11-04T16:35:19Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2014-11-04T16:35:19Z
dc.date.issued2014-09en_US
dc.identifier.citationHarri, A.‐m. ; Genzer, M.; Kemppinen, O.; Gomez‐elvira, J. ; Haberle, R.; Polkko, J.; Savijärvi, H. ; Rennó, N. ; Rodriguez‐manfredi, J. A. ; Schmidt, W.; Richardson, M.; Siili, T.; Paton, M.; Torre‐juarez, M. De la ; Mäkinen, T. ; Newman, C.; Rafkin, S.; Mischna, M.; Merikallio, S.; Haukka, H.; Martin‐torres, J. ; Komu, M.; Zorzano, M.‐p. ; Peinado, V.; Vazquez, L.; Urqui, R. (2014). "Mars Science Laboratory relative humidity observations: Initial results." Journal of Geophysical Research: Planets 119(9): 2132-2147.en_US
dc.identifier.issn2169-9097en_US
dc.identifier.issn2169-9100en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/109282
dc.description.abstractThe Mars Science Laboratory (MSL) made a successful landing at Gale crater early August 2012. MSL has an environmental instrument package called the Rover Environmental Monitoring Station (REMS) as a part of its scientific payload. REMS comprises instrumentation for the observation of atmospheric pressure, temperature of the air, ground temperature, wind speed and direction, relative humidity (REMS‐H), and UV measurements. We concentrate on describing the REMS‐H measurement performance and initial observations during the first 100 MSL sols as well as constraining the REMS‐H results by comparing them with earlier observations and modeling results. The REMS‐H device is based on polymeric capacitive humidity sensors developed by Vaisala Inc., and it makes use of transducer electronics section placed in the vicinity of the three humidity sensor heads. The humidity device is mounted on the REMS boom providing ventilation with the ambient atmosphere through a filter protecting the device from airborne dust. The final relative humidity results appear to be convincing and are aligned with earlier indirect observations of the total atmospheric precipitable water content. The water mixing ratio in the atmospheric surface layer appears to vary between 30 and 75 ppm. When assuming uniform mixing, the precipitable water content of the atmosphere is ranging from a few to six precipitable micrometers. Key Points Atmospheric water mixing ratio at Gale crater varies from 30 to 140 ppm MSL relative humidity observation provides good data Highest detected relative humidity reading during first MSL 100 sols is RH75%en_US
dc.publisherUniv. of Ariz. Pressen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherHumidityen_US
dc.subject.otherAtmosphereen_US
dc.subject.otherMarsen_US
dc.subject.otherGaleen_US
dc.subject.otherMSLen_US
dc.subject.otherTotal Water Contenten_US
dc.titleMars Science Laboratory relative humidity observations: Initial resultsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109282/1/jgre20286.pdf
dc.identifier.doi10.1002/2013JE004514en_US
dc.identifier.sourceJournal of Geophysical Research: Planetsen_US
dc.identifier.citedreferenceRichardson, M. I., A. D. Toigo, and C. E. Newman ( 2007 ), PlanetWRF: A general purpose, local to global numerical model for planetary atmospheric and climate dynamics, J. Geophys. Res., 112, E09001, doi: 10.1029/2006JE002825.en_US
dc.identifier.citedreferenceBöttger, H. M., S. R. Lewis, P. L. Read, and F. Forget ( 2005 ), The effects of the Martian regolith on GCM water cycle simulations, Icarus, 177, 174 – 189, doi: 10.1016/j.icarus.2005.02.024.en_US
dc.identifier.citedreferenceBoynton, W. V., et al. ( 2002 ), Distribution of hydrogen in the near surface of Mars: Evidence for subsurface ice deposits, Science, 297, 81 – 85, doi: 10.1126/science.1073722.en_US
dc.identifier.citedreferenceChristensen, P. R., et al. ( 2001 ), Mars global surveyor thermal emission spectrometer experiment: Investigation description and surface science results, J. Geophys. Res., 106, 23,823 – 23,872.en_US
dc.identifier.citedreferenceFarmer, C. B., D. W. Davies, A. L. Holland, D. D. Laporte, and P. E. Doms ( 1977 ), Mars—Water vapor observations from the Viking orbiters, J. Geophys. Res., 82, 4225 – 4248, doi: 10.1029/JS082i028p04225.en_US
dc.identifier.citedreferenceForget, F., F. Hourdin, R. Fournier, C. Hourdin, O. Talagrand, M. Collins, S. R. Lewis, P. L. Read, and J. ‐P. Huot ( 1999 ), Improved general circulation models of the Martian atmosphere from the surface to above 80 km, J. Geophys. Res., 104, 24,155 – 24,176, doi: 10.1029/1999JE001025.en_US
dc.identifier.citedreferenceGómez‐Elvira, J., et al. ( 2012 ), REMS: The environmental sensor suite for the Mars Science Laboratory rover, Space Sci. Rev., 170, 583 – 640, doi: 10.1007/s11214‐012‐9921‐1.en_US
dc.identifier.citedreferenceHaberle, R. M., J. Pollack, J. R. Barnes, R. W. Zurek, C. B. Leovy, J. R. Murphy, H. Lee, and J. Schaeffer ( 1993 ), Mars atmospheric dynamics as simulated by the NASA Ames general circulation model. 1. The zonal‐mean circulation, J. Geophys. Res., 98, 3093 – 3124.en_US
dc.identifier.citedreferenceHaberle, R. M., C. P. McKay, J. Schaeffer, N. A. Cabrol, E. A. Grin, A. P. Zent, and R. Quinn ( 2001 ), On the possibility of liquid water on present‐day Mars, J. Geophys. Res., 106 ( E10 ), 23,317 – 23,326.en_US
dc.identifier.citedreferenceJakosky, B. M. ( 1983 ), The role of seasonal reservoirs in the Mars water cycle II. Coupled models of the regolith, the polar caps, and atmospheric transport, Icarus, 55, 19 – 39, doi: 10.1016/0019‐1035(83)90047‐7.en_US
dc.identifier.citedreferenceJakosky, B. M., and R. M. Haberle ( 1992 ), The seasonal behavior of water on Mars, in Mars, edited by H. H. Kieffer et al., pp. 969 – 1016, Univ. of Ariz. Press, Tucson, Ariz.en_US
dc.identifier.citedreferenceJames, P. B., H. H. Kieffer, and D. A. Paige ( 1992 ), The seasonal cycle of carbon dioxide on Mars, in Mars, edited by H. H. Kieffer et al., pp. 934 – 968, Univ. of Ariz. Press, Tucson, Ariz.en_US
dc.identifier.citedreferenceKieffer, H. H., S. C. Chase, T. Z. Martin, E. D. Miner, and F. D. Palluconi ( 1976 ), Martian north pole summer temperatures: Dirty water ice, Science, 194, 1341 – 1344.en_US
dc.identifier.citedreferenceKieffer, H. H., B. M. Jakosky, and C. W. Snyder ( 1992 ), The planet Mars: From antiquity to present, in Mars, edited by H. H. Kieffer et al., pp. 1 – 33, Univ. of Ariz. Press, Tucson, Ariz.en_US
dc.identifier.citedreferenceKorablev, O. I., J. ‐L. Bertaux, and J. ‐P. Dubois ( 2001 ), Occultation of stars in the UV: Study of the atmosphere of Mars, J. Geophys. Res., 106, 7597 – 7610, doi: 10.1029/2000JE001298.en_US
dc.identifier.citedreferenceKuzmin, R. O., E. V. Zabalueva, N. A. Evdokimova, and P. R. Christensen ( 2012 ), Mapping of the water ice content within the Martian surficial soil on the periphery of the retreating seasonal northern polar cap based on the TES and the OMEGA data, J. Geophys. Res., 117, E00J19, doi: 10.1029/2012JE004071.en_US
dc.identifier.citedreferenceLeovy, C. B., and Y. Mintz ( 1969 ), Numerical simulation of the atmospheric circulation and climate of Mars, J. Geophys. Res., 26, 1167 – 1190.en_US
dc.identifier.citedreferenceMartin, L. J., P. B. James, A. Dollfus, K. Iwasaki, and J. D. Beish ( 1992 ), Telescopic observations: Visual, photographic, polarimetric, in Mars, edited by H. H. Kieffer et al., pp. 34 – 70, Univ. of Ariz. Press, Tucson, Ariz.en_US
dc.identifier.citedreferenceMasursky, H., et al. ( 1972 ), Mariner 9 Mars television experiment, Bull. Am. Astron. Soc., 4, 356.en_US
dc.identifier.citedreferenceMilton, D. J. ( 1973 ), Water and processes of degradation in the Martian landscape, J. Geophys. Res., 78, 4037 – 4047, doi: 10.1029/JB078i020p04037.en_US
dc.identifier.citedreferenceMorris, R. V., et al. ( 2006 ), Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills, J. Geophys. Res., 111, E02S13, doi: 10.1029/2005JE002584.en_US
dc.identifier.citedreferencePeralta, R. J., S. H. Silverman, D. M. Bates, P. Christensen, G. Mehall, T. Tourville, R. Keehn, and G. Cannon ( 2002 ), Miniature thermal emission spectrometer for the Mars Exploration Rover, in Society of Photo‐Optical Instrumentation Engineers (SPIE) Conference Series, Society of Photo‐Optical Instrumentation Engineers (SPIE) Conference Series, vol. 4485, edited by A. M. Larar and M. G. Mlynczak, pp. 39 – 50, Society of Photo‐Optical Instrumentation Engineers (SPIE).en_US
dc.identifier.citedreferencePollack, J. B., R. M. Haberle, J. Schaeffer, and H. Lee ( 1990 ), Simulations of the general circulation of the Martian atmosphere. 1. Polar processes, J. Geophys. Res., 95, 1447 – 1473.en_US
dc.identifier.citedreferencePollack, J. B., R. M. Haberle, J. R. Murphy, J. Schaeffer, and H. Lee ( 1993 ), Simulations of the general circulation of the Martian atmosphere. 2. Seasonal pressure variations, J. Geophys. Res., 98, 3149 – 3182.en_US
dc.identifier.citedreferencePresley, M. A., and P. R. Christensen ( 1997 ), Thermal conductivity measurements of particulate materials. 2. Results, J. Geophys. Res., 102, 6551 – 6566, doi: 10.1029/96JE03303.en_US
dc.identifier.citedreferenceRead, P. L., and S. R. Lewis (Eds.) ( 2004 ), The Martian Climate Revisited—Atmosphere and Environment of a Desert Planet, 326  pp., Springer‐Verlag, Berlin.en_US
dc.identifier.citedreferenceRennó, N. O., et al. ( 2009 ), Possible physical and thermodynamical evidence for liquid water at the Phoenix landing site, J. Geophys. Res., 114, E00E03, doi: 10.1029/2009JE003362.en_US
dc.identifier.citedreferenceRichardson, M. I., and R. J. Wilson ( 2002 ), Investigation of the nature and stability of the Martian seasonal water cycle with a general circulation model, J. Geophys. Res., 107 ( E5 ), 5031, doi: 10.1029/2001JE001536.en_US
dc.identifier.citedreferenceSavijärvi, H. ( 1999 ), A model study of the atmospheric boundary layer in the Mars Pathfinder lander conditions, Q. J. R. Meteorol. Soc., 125, 483 – 493.en_US
dc.identifier.citedreferenceSavijärvi, H., and J. Kauhanen ( 2008 ), Surface and boundary‐layer modelling for the Mars Exploration Rover sites, Q. J. R. Meteorol. Soc., 134, 635 – 641.en_US
dc.identifier.citedreferenceSavijärvi, H., and A. Määttänen ( 2010 ), Boundary‐layer simulations for the Mars Phoenix lander site, Q. J. R. Meteorol. Soc., 136, 1497 – 1505.en_US
dc.identifier.citedreferenceSavijärvi, H., A. Määttänen, J. Kauhanen, and A. ‐M. Harri ( 2004 ), Mars Pathfinder: New data and new model simulations, Q. J. R. Meteorol. Soc., 130, 669 – 683, doi: 10.1256/qj.03.59.en_US
dc.identifier.citedreferenceSizemore, H. G., M. T. Mellon, M. L. Searls, M. T. Lemmon, A. P. Zent, T. L. Heet, R. E. Arvidson, D. L. Blaney, and H. U. Keller ( 2010 ), In situ analysis of ice table depth variations in the vicinity of small rocks at the Phoenix landing site, J. Geophys. Res., 115, E00E09, doi: 10.1029/2009JE003414.en_US
dc.identifier.citedreferenceSmith, D. E., et al. ( 1999 ), The global topography of Mars and implications for surface evolution, Science, 284, 1495 – 1503.en_US
dc.identifier.citedreferenceSmith, M. D. ( 2004 ), Interannual variability in TES atmospheric observations of Mars during 1999–2003, Icarus, 167, 148 – 165.en_US
dc.identifier.citedreferenceSmith, M. D., J. C. Pearl, B. J. Conrath, and P. R. Christensen ( 2001 ), One Martian year of atmospheric observations by the Thermal Emission Spectrometer, Geophys. Res. Lett., 28, 4263 – 4266, doi: 10.1029/2001GL013608.en_US
dc.identifier.citedreferenceSmith, M. D., M. J. Wolff, N. Spanovich, A. Ghosh, D. Banfield, P. R. Christensen, G. A. Landis, and S. W. Squyres ( 2006 ), One Martian year of atmospheric observations using MER Mini‐TES, J. Geophys. Res., 111, E12S13, doi: 10.1029/2006JE002770.en_US
dc.identifier.citedreferenceSpinrad, H., G. Münch, and L. D. Kaplan ( 1963 ), Letter to the Editor: The detection of water vapor on Mars, Astrophys. J., 137, 1319, doi: 10.1086/147613.en_US
dc.identifier.citedreferenceThomas, P., S. Squyres, K. Herkenhoff, A. Howard, and B. Murray ( 1992 ), Polar deposits of Mars, in Mars, edited by H. H. Kieffer et al., pp. 767 – 798, Univ. of Ariz. Press, Tucson, Ariz.en_US
dc.identifier.citedreferenceTrainer, M. G., M. A. Tolbert, C. P. McKay, and O. B. Toon ( 2010 ), Enhanced CO 2 trapping in water ice via atmospheric deposition with relevance to Mars, Icarus, 206, 707 – 715, doi: 10.1016/j.icarus.2009.09.008.en_US
dc.identifier.citedreferenceVincendon, M., J. Mustard, F. Forget, M. Kreslavsky, A. Spiga, S. Murchie, and J. ‐P. Bibring ( 2010 ), Near‐tropical subsurface ice on Mars, Geophys. Res. Lett., 37, L01202, doi: 10.1029/2009GL041426.en_US
dc.identifier.citedreferenceWall, S. D. ( 1981 ), Analysis of condensates formed at the Viking 2 lander site—The first winter, Icarus, 47, 173 – 183, doi: 10.1016/0019‐1035(81)90165‐2.en_US
dc.identifier.citedreferenceWhiteway, J. A., et al. ( 2009 ), Mars water‐ice clouds and precipitation, Science, 325 ( 5936 ), 68 – 70, doi: 10.1126/science.1172344.en_US
dc.identifier.citedreferenceWray, J. J. ( 2013 ), Gale crater: The Mars Science Laboratory/Curiosity rover landing site, Int. J. Astrobiol., 12, 25 – 38, doi: 10.1017/S1473550412000328.en_US
dc.identifier.citedreferenceZurek, R. W. ( 1992 ), Comparative aspects of the climate of Mars: An introduction to the current atmosphere, in Mars, edited by H. H. Kieffer et al., pp. 799 – 817, Univ. of Ariz. Press, Tucson, Ariz.en_US
dc.identifier.citedreferenceZurek, R. W., J. R. Barnes, R. M. Haberle, J. B. Pollack, J. E. Tillman, and C. B. Leovy ( 1992 ), Dynamics of the atmosphere of Mars, in Mars, edited by H. H. Kieffer et al., pp. 835 – 933, Univ. of Ariz. Press, Tucson, Ariz.en_US
dc.identifier.citedreferenceBarnes, J. R., J. B. Pollack, R. M. Haberle, C. B. Leovy, R. W. Zurek, H. Lee, and J. Schaeffer ( 1993 ), Mars atmospheric dynamics as simulated by the NASA Ames general circulation model, 2, transient baroclinic eddies, J. Geophys. Res., 98, 3125 – 3148.en_US
dc.identifier.citedreferenceBiemann, K., J. Oro, P. Toulmin III, L. E. Orgel, A. O. Nier, D. M. Anderson, D. Flory, A. V. Diaz, D. R. Rushneck, and P. G. Simmonds ( 1977 ), The search for organic substances and inorganic volatile compounds in the surface of Mars, J. Geophys. Res., 82, 4641 – 4658, doi: 10.1029/JS082i028p04641.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.