Show simple item record

Impaired Function is a Common Feature of Neuropathy‐Associated Glycyl‐t RNA Synthetase Mutations

dc.contributor.authorGriffin, Laurie B.en_US
dc.contributor.authorSakaguchi, Reikoen_US
dc.contributor.authorMcGuigan, Daviden_US
dc.contributor.authorGonzalez, Michael A.en_US
dc.contributor.authorSearby, Charlesen_US
dc.contributor.authorZüchner, Stephanen_US
dc.contributor.authorHou, Ya‐mingen_US
dc.contributor.authorAntonellis, Anthonyen_US
dc.date.accessioned2014-11-04T16:35:22Z
dc.date.availableWITHHELD_13_MONTHSen_US
dc.date.available2014-11-04T16:35:22Z
dc.date.issued2014-11en_US
dc.identifier.citationGriffin, Laurie B.; Sakaguchi, Reiko; McGuigan, David; Gonzalez, Michael A.; Searby, Charles; Züchner, Stephan ; Hou, Ya‐ming ; Antonellis, Anthony (2014). "Impaired Function is a Common Feature of Neuropathyâ Associated Glycylâ t RNA Synthetase Mutations." Human Mutation 35(11): 1363-1371.en_US
dc.identifier.issn1059-7794en_US
dc.identifier.issn1098-1004en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/109288
dc.description.abstractC harcot– M arie– T ooth disease type 2 D ( CMT 2 D ) is an autosomal‐dominant axonal peripheral neuropathy characterized by impaired motor and sensory function in the distal extremities. Mutations in the glycyl‐t RNA synthetase ( GARS ) gene cause CMT 2 D . GARS is a member of the ubiquitously expressed aminoacyl‐ tRNA synthetase ( ARS ) family and is responsible for charging t RNA with glycine. To date, 13 GARS mutations have been identified in patients with CMT disease. While functional studies have revealed loss‐of‐function characteristics, only four GARS mutations have been rigorously studied. Here, we report the functional evaluation of nine CMT ‐associated GARS mutations in t RNA charging, yeast complementation, and subcellular localization assays. Our results demonstrate that impaired function is a common characteristic of CMT ‐associated GARS mutations. Additionally, one mutation previously associated with CMT disease (p. S er581 L eu) does not demonstrate impaired function, was identified in the general population, and failed to segregate with disease in two newly identified families with CMT disease. Thus, we propose that this variant is not a disease‐causing mutation. Together, our data indicate that impaired function is a key component of GARS ‐mediated CMT disease and emphasize the need for careful genetic and functional evaluation before implicating a variant in disease onset.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherC Harcot– M Arie– T Ooth Diseaseen_US
dc.subject.otherPeripheral Neuropathyen_US
dc.subject.otherGlycyl‐T RNA Synthetaseen_US
dc.subject.otherGARSen_US
dc.subject.otherAminoacyl‐T RNA Synthetaseen_US
dc.titleImpaired Function is a Common Feature of Neuropathy‐Associated Glycyl‐t RNA Synthetase Mutationsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeneticsen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109288/1/humu22681.pdf
dc.identifier.doi10.1002/humu.22681en_US
dc.identifier.sourceHuman Mutationen_US
dc.identifier.citedreferencePericak‐Vance MA, Speer MC, Lennon F, West SG, Menold MM, Stajich JM, Wolpert CM, Slotterbeck BD, Saito M, Tim RW, Rozear MP, Middleton LT, et al. 1997. Confirmation of a second locus for CMT2 and evidence for additional genetic heterogeneity. Neurogenetics 1: 89 – 93.en_US
dc.identifier.citedreferenceLatour P, Thauvin‐Robinet C, Baudelet‐Méry C, Soichot P, Cusin V, Faivre L, Locatelli M‐C, Mayençon M, Sarcey A, Broussolle E, Camu W, David A, et al. 2010. A major determinant for binding and aminoacylation of tRNA(Ala) in cytoplasmic Alanyl‐tRNA synthetase is mutated in dominant axonal Charcot–Marie–Tooth disease. Am J Hum Genet 86: 77 – 82.en_US
dc.identifier.citedreferenceLee HJ, Park J, Nakhro K, Park JM, Hur Y‐M, Choi B‐O, Chung KW. 2012. Two novel mutations of GARS in Korean families with distal hereditary motor neuropathy type V. J Peripher Nerv Syst 17: 418 – 421.en_US
dc.identifier.citedreferenceMacArthur DG, Manolio TA, Dimmock DP, Rehm HL, Shendure J, Abecasis GR, Adams DR, Altman RB, Antonarakis SE, Ashley EA, Barrett JC, Biesecker LG, et al. 2014. Guidelines for investigating causality of sequence variants in human disease. Nature 508: 469 – 476.en_US
dc.identifier.citedreferenceMcLaughlin HM, Sakaguchi R, Giblin W, NIH Intramural Sequencing Center, Wilson TE, Biesecker L, Lupski JR, Talbot K, Vance JM, Züchner S, Lee Y‐C, Kennerson M, et al. 2011. A recurrent loss‐of‐function alanyl‐tRNA synthetase (AARS ) mutation in patients with Charcot–Marie–Tooth disease type 2 N (CMT2 N). Hum Mut 33: 244 – 253.en_US
dc.identifier.citedreferenceMcLaughlin HM, Sakaguchi R, Liu C, Igarashi T, Pehlivan D, Chu K, Iyer R, Cruz P, Cherukuri PF, Hansen NF, Mullikin JC, Biesecker LG, et al. 2010. Compound heterozygosity for loss‐of‐function lysyl‐tRNA synthetase mutations in a patient with peripheral neuropathy. Am J Hum Genet 87: 560 – 566.en_US
dc.identifier.citedreferenceMersiyanova IV, Perepelov AV, Polyakov AV, Sitnikov VF, Dadali EL, Oparin RB, Petrin AN, Evgrafov OV. 2000. A new variant of Charcot–Marie–Tooth disease type 2 is probably the result of a mutation in the neurofilament‐light gene. Am J Hum Genet 67: 37 – 46.en_US
dc.identifier.citedreferenceMillecamps S, Julien J‐P. 2013. Axonal transport deficits and neurodegenerative diseases. Nat Rev Neurosci 14: 161 – 176.en_US
dc.identifier.citedreferenceMotley WW, Seburn KL, Nawaz MH, Miers KE, Cheng J, Antonellis A, Green ED, Talbot K, Yang X‐L, Fischbeck KH, Burgess RW. 2011. Charcot–Marie–Tooth‐linked mutant GARS is toxic to peripheral neurons independent of wild‐type GARS levels. PLoS Genet 7: e1002399.en_US
dc.identifier.citedreferenceMotley WW, Talbot K, Fischbeck KH. 2010. GARS axonopathy: not every neuron's cup of tRNA. Trends Neurosci 33: 59 – 66.en_US
dc.identifier.citedreferenceNangle LA, Zhang W, Xie W, Yang X‐L, Schimmel P. 2007. Charcot–Marie–Tooth disease‐associated mutant tRNA synthetases linked to altered dimer interface and neurite distribution defect. Proc Natl Acad Sci USA 104: 11239 – 11244.en_US
dc.identifier.citedreferencePatel PI, Roa BB, Welcher AA, Schoener‐Scott R, Trask BJ, Pentao L, Snipes GJ, Garcia CA, Francke U, Shooter EM, Lupski JR, Suter U. 1992. The gene for the peripheral myelin protein PMP‐22 is a candidate for Charcot–Marie–Tooth disease type 1 A. Nat Genet 1: 159 – 165.en_US
dc.identifier.citedreferenceAntonellis A, Green ED. 2008. The role of aminoacyl‐tRNA synthetases in genetic diseases. Annu Rev Genom Hum Genet 9: 87 – 107.en_US
dc.identifier.citedreferenceRay PS, Sullivan JC, Jia J, Francis J, Finnerty JR, Fox PL. 2011. Evolution of function of a fused metazoan tRNA synthetase. Mol Biol Evol 28: 437 – 447.en_US
dc.identifier.citedreferenceReilly MM, Murphy SM, Laurà M. 2011. Charcot–Marie–Tooth disease. J Peripher Nervous Sys 16: 1 – 14.en_US
dc.identifier.citedreferenceRohkamm B, Reilly MM, Lochmüller H, Schlotter‐Weigel B, Barisic N, Schöls L, Nicholson G, Pareyson D, Laurà M, Janecke AR, Miltenberger‐Miltenyi G, John E, et al. 2007. Further evidence for genetic heterogeneity of distal HMN type V, CMT2 with predominant hand involvement and Silver syndrome. J Neurolog Sci 263: 100 – 106.en_US
dc.identifier.citedreferenceSalazar‐Grueso EF, Kim S, Kim H. 1991. Embryonic mouse spinal cord motor neuron hybrid cells. Neuroreport 2: 505 – 508.en_US
dc.identifier.citedreferenceSambuughin N, Sivakumar K, Selenge B, Lee HS, Friedlich D, Baasanjav D, Dalakas MC, Goldfarb LG. 1998. Autosomal dominant distal spinal muscular atrophy type V (dSMA‐V) and Charcot–Marie–Tooth disease type 2 D (CMT2 D) segregate within a single large kindred and map to a refined region on chromosome 7p15. J Neurolog Sci 161: 23 – 28.en_US
dc.identifier.citedreferenceSchreier AA, Schimmel PR. 1972. Transfer ribonucleic acid synthetase catalyzed deacylation of aminoacyl transfer ribonucleic acid in the absence of adenosine monophosphate and pyrophosphate. Biochemistry 11: 1582 – 1589.en_US
dc.identifier.citedreferenceSeburn KL, Nangle LA, Cox GA, Schimmel P, Burgess RW. 2006. An active dominant mutation of glycyl‐tRNA synthetase causes neuropathy in a Charcot–Marie–Tooth 2D mouse model. Neuron 51: 715 – 726.en_US
dc.identifier.citedreferenceSkre H. 1974. Genetic and clinical aspects of Charcot–Marie–Tooth's disease. Clin Genet 6: 98 – 118.en_US
dc.identifier.citedreferenceStum M, McLaughlin HM, Kleinbrink EL, Miers KE, Ackerman SL, Seburn KL, Antonellis A, Burgess RW. 2011. An assessment of mechanisms underlying peripheral axonal degeneration caused by aminoacyl‐tRNA synthetase mutations. Mol Cell Neurosci 46: 432 – 443.en_US
dc.identifier.citedreferenceTimmerman V, Strickland AV, Züchner S. 2014. Genetics of Charcot–Marie–Tooth (CMT) disease within the frame of the Human Genome Project success. Genes 5: 13 – 32.en_US
dc.identifier.citedreferenceTurner RJ, Lovato M, Schimmel P. 2000. One of two genes encoding glycyl‐tRNA synthetase in Saccharomyces cerevisiae provides mitochondrial and cytoplasmic functions. J Biol Chem 275: 27681 – 27688.en_US
dc.identifier.citedreferenceVester A, Velez‐Ruiz G, McLaughlin HM, NISC Comparative Sequencing Program, Lupski JR, Talbot K, Vance JM, Züchner S, Roda RH, Fischbeck KH, Biesecker LG, Nicholson G, et al. 2012. A loss‐of‐function variant in the human histidyl‐tRNA synthetase (HARS) gene is neurotoxic in vivo. Hum Mut 34: 191 – 199.en_US
dc.identifier.citedreferenceWallen RC, Antonellis A. 2013. To charge or not to charge: mechanistic insights into neuropathy‐associated tRNA synthetase mutations. Curr Opin Genet Dev 23: 302 – 309.en_US
dc.identifier.citedreferenceXie W, Nangle LA, Zhang W, Schimmel P, Yang X‐L. 2007. Long‐range structural effects of a Charcot–Marie–Tooth disease‐causing mutation in human glycyl‐tRNA synthetase. Proc Natl Acad Sci USA 104: 9976 – 9981.en_US
dc.identifier.citedreferenceZüchner S, Mersiyanova IV, Muglia M, Bissar‐Tadmouri N, Rochelle J, Dadali EL, Zappia M, Nelis E, Patitucci A, Senderek J, Parman Y, Evgrafov O, et al. 2004. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot–Marie–Tooth neuropathy type 2A. Nat Genet 36: 449 – 451.en_US
dc.identifier.citedreferenceAbe A, Hayasaka K. 2009. The GARS gene is rarely mutated in Japanese patients with Charcot–Marie–Tooth neuropathy. J Hum Genet 54: 310 – 312.en_US
dc.identifier.citedreferenceAchilli F, Bros‐Facer V, Williams HP, Banks GT, AlQatari M, Chia R, Tucci V, Groves M, Nickols CD, Seburn KL, Kendall R, Cader MZ, et al. 2009. An ENU‐induced mutation in mouse glycyl‐tRNA synthetase (GARS) causes peripheral sensory and motor phenotypes creating a model of Charcot–Marie‐Tooth type 2 D peripheral neuropathy. Dis Models Mech 2: 359 – 373.en_US
dc.identifier.citedreferenceAntonellis A, Ellsworth RE, Sambuughin N, Puls I, Abel A, Lee‐Lin S‐Q, Jordanova A, Kremensky I, Christodoulou K, Middleton LT, Sivakumar K, Ionasescu V, et al. 2003. Glycyl tRNA synthetase mutations in Charcot–Marie–Tooth disease type 2 D and distal spinal muscular atrophy type V. Am J Hum Genet 72: 1293 – 1299.en_US
dc.identifier.citedreferenceAntonellis A, Lee‐Lin SQ, Wasterlain A, Leo P, Quezado M, Goldfarb LG, Myung K, Burgess S, Fischbeck KH, Green ED. 2006. Functional analyses of glycyl‐tRNA synthetase mutations suggest a key role for tRNA‐charging enzymes in peripheral axons. J Neurosci 26: 10397 – 10406.en_US
dc.identifier.citedreferenceBoeke JD, Trueheart J, Natsoulis G, Fink GR. 1987. 5‐Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol 154: 164 – 175.en_US
dc.identifier.citedreferenceCader MZ, Ren J, James PA, Bird LE, Talbot K, Stammers DK. 2007. Crystal structure of human wildtype and S581L‐mutant glycyl‐tRNA synthetase, an enzyme underlying distal spinal muscular atrophy. FEBS letters 581: 2959 – 2964.en_US
dc.identifier.citedreferenceChihara T, Luginbuhl D, Luo L. 2007. Cytoplasmic and mitochondrial protein translation in axonal and dendritic terminal arborization. Nat Neurosci 10: 828 – 837.en_US
dc.identifier.citedreferenceChristodoulou K, Kyriakides T, Hristova AH, Georgiou DM, Kalaydjieva L, Yshpekova B, Ivanova T, Weber JL, Middleton LT. 1995. Mapping of a distal form of spinal muscular atrophy with upper limb predominance to chromosome 7p. Hum Mol Genet 4: 1629 – 1632.en_US
dc.identifier.citedreferenceDel Bo R, Locatelli F, Corti S, Scarlato M, Ghezzi S, Prelle A, Fagiolari G, Moggio M, Carpo M, Bresolin N, Comi GP. 2006. Coexistence of CMT‐2 D and distal SMA‐V phenotypes in an Italian family with a GARS gene mutation. Neurology 66: 752 – 754.en_US
dc.identifier.citedreferenceDelarue M. 1995. Aminoacyl‐tRNA synthetases. Curr Opin Struct Biol 5: 48 – 55.en_US
dc.identifier.citedreferenceDyck PJ, Lambert EH. 1968. Lower motor and primary sensory neuron diseases with peroneal muscular atrophy. I. Neurologic, genetic, and electrophysiologic findings in hereditary polyneuropathies. Arch Neurol 18: 603 – 618.en_US
dc.identifier.citedreferenceEllsworth RE, Ionasescu V, Searby C, Sheffield VC, Braden VV, Kucaba TA, McPherson JD, Marra MA, Green ED. 1999. The CMT2 D locus: refined genetic position and construction of a bacterial clone‐based physical map. Genome Resh 9: 568 – 574.en_US
dc.identifier.citedreferenceFallini C, Zhang H, Su Y, Silani V, Singer RH, Rossoll W, Bassell GJ. 2011. The survival of motor neuron (SMN) protein interacts with the mRNA‐binding protein HuD and regulates localization of poly(A) mRNA in primary motor neuron axons. J Neurosci 31: 3914 – 3925.en_US
dc.identifier.citedreferenceFroelich CA, First EA. 2011. Dominant intermediate Charcot–Marie–Tooth disorder is not due to a catalytic defect in tyrosyl‐tRNA synthetase. Biochemistry 50: 7132 – 7145.en_US
dc.identifier.citedreferenceGiuditta A, Kaplan BB, van Minnen J, Alvarez J, Koenig E. 2002. Axonal and presynaptic protein synthesis: new insights into the biology of the neuron. Trends Neurosci 25: 400 – 404.en_US
dc.identifier.citedreferenceGonzalez M, McLaughlin H, Houlden H, Guo M, Yo‐Tsen L, Hadjivassilious M, Speziani F, Yang X‐L, Antonellis A, Reilly MM, Züchner S; Inherited Neuropathy Consortium (INC). 2013. Exome sequencing identifies a significant variant in methionyl‐tRNA synthetase (MARS) in a family with late‐onset CMT2. J Neurol Neurosurg Psychiatry 84: 1247 – 1249.en_US
dc.identifier.citedreferenceHayasaka K, Himoro M, Sato W, Takada G, Uyemura K, Shimizu N, Bird TD, Conneally PM, Chance PF. 1993. Charcot–Marie–Tooth neuropathy type 1B is associated with mutations of the myelin P0 gene. Nat Genet 5: 31 – 34.en_US
dc.identifier.citedreferenceHe W, Zhang H‐M, Chong YE, Guo M, Marshall AG, Yang X‐L. 2011. Dispersed disease‐causing neomorphic mutations on a single protein promote the same localized conformational opening. Proc Natl Acad Sci USA 108: 12307 – 12312.en_US
dc.identifier.citedreferenceHou YM, Westhof E, Giegé R. 1993. An unusual RNA tertiary interaction has a role for the specific aminoacylation of a transfer RNA. Proc Natl Acad Sci USA 90: 6776 – 6780.en_US
dc.identifier.citedreferenceIngoglia NA, Giuditta A, Zanakis MF, Babigian A, Tasaki I, Chakraborty G, Sturman JA. 1983. Incorporation of 3 H‐amino acids into proteins in a partially purified fraction of axoplasm: evidence for transfer RNA‐mediated, post‐translational protein modification in squid giant axons. J Neurosci 3: 2463 – 2473.en_US
dc.identifier.citedreferenceIonasescu V, Searby C, Sheffield VC, Roklina T, Nishimura D, Ionasescu R. 1996. Autosomal dominant Charcot–Marie–Tooth axonal neuropathy mapped on chromosome 7p (CMT2 D). Hum Mol Genet 5: 1373 – 1375.en_US
dc.identifier.citedreferenceJames PA, Cader MZ, Muntoni F, Childs A‐M, Crow YJ, Talbot K. 2006. Severe childhood SMA and axonal CMT due to anticodon binding domain mutations in the GARS gene. Neurology 67: 1710 – 1712.en_US
dc.identifier.citedreferenceJordanova A, Irobi J, Thomas FP, Van Dijck P, Meerschaert K, Dewil M, Dierick I, Jacobs A, De Vriendt E, Guergueltcheva V, Rao CV, Tournev I, et al. 2006. Disrupted function and axonal distribution of mutant tyrosyl‐tRNA synthetase in dominant intermediate Charcot–Marie–Tooth neuropathy. Nat Genet 38: 197 – 202.en_US
dc.identifier.citedreferenceLarkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947 – 2948.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.