Impaired Function is a Common Feature of Neuropathy‐Associated Glycyl‐t RNA Synthetase Mutations
dc.contributor.author | Griffin, Laurie B. | en_US |
dc.contributor.author | Sakaguchi, Reiko | en_US |
dc.contributor.author | McGuigan, David | en_US |
dc.contributor.author | Gonzalez, Michael A. | en_US |
dc.contributor.author | Searby, Charles | en_US |
dc.contributor.author | Züchner, Stephan | en_US |
dc.contributor.author | Hou, Ya‐ming | en_US |
dc.contributor.author | Antonellis, Anthony | en_US |
dc.date.accessioned | 2014-11-04T16:35:22Z | |
dc.date.available | WITHHELD_13_MONTHS | en_US |
dc.date.available | 2014-11-04T16:35:22Z | |
dc.date.issued | 2014-11 | en_US |
dc.identifier.citation | Griffin, Laurie B.; Sakaguchi, Reiko; McGuigan, David; Gonzalez, Michael A.; Searby, Charles; Züchner, Stephan ; Hou, Ya‐ming ; Antonellis, Anthony (2014). "Impaired Function is a Common Feature of Neuropathyâ Associated Glycylâ t RNA Synthetase Mutations." Human Mutation 35(11): 1363-1371. | en_US |
dc.identifier.issn | 1059-7794 | en_US |
dc.identifier.issn | 1098-1004 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/109288 | |
dc.description.abstract | C harcot– M arie– T ooth disease type 2 D ( CMT 2 D ) is an autosomal‐dominant axonal peripheral neuropathy characterized by impaired motor and sensory function in the distal extremities. Mutations in the glycyl‐t RNA synthetase ( GARS ) gene cause CMT 2 D . GARS is a member of the ubiquitously expressed aminoacyl‐ tRNA synthetase ( ARS ) family and is responsible for charging t RNA with glycine. To date, 13 GARS mutations have been identified in patients with CMT disease. While functional studies have revealed loss‐of‐function characteristics, only four GARS mutations have been rigorously studied. Here, we report the functional evaluation of nine CMT ‐associated GARS mutations in t RNA charging, yeast complementation, and subcellular localization assays. Our results demonstrate that impaired function is a common characteristic of CMT ‐associated GARS mutations. Additionally, one mutation previously associated with CMT disease (p. S er581 L eu) does not demonstrate impaired function, was identified in the general population, and failed to segregate with disease in two newly identified families with CMT disease. Thus, we propose that this variant is not a disease‐causing mutation. Together, our data indicate that impaired function is a key component of GARS ‐mediated CMT disease and emphasize the need for careful genetic and functional evaluation before implicating a variant in disease onset. | en_US |
dc.publisher | Wiley Periodicals, Inc. | en_US |
dc.subject.other | C Harcot– M Arie– T Ooth Disease | en_US |
dc.subject.other | Peripheral Neuropathy | en_US |
dc.subject.other | Glycyl‐T RNA Synthetase | en_US |
dc.subject.other | GARS | en_US |
dc.subject.other | Aminoacyl‐T RNA Synthetase | en_US |
dc.title | Impaired Function is a Common Feature of Neuropathy‐Associated Glycyl‐t RNA Synthetase Mutations | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Genetics | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.subject.hlbtoplevel | Health Sciences | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/109288/1/humu22681.pdf | |
dc.identifier.doi | 10.1002/humu.22681 | en_US |
dc.identifier.source | Human Mutation | en_US |
dc.identifier.citedreference | Pericak‐Vance MA, Speer MC, Lennon F, West SG, Menold MM, Stajich JM, Wolpert CM, Slotterbeck BD, Saito M, Tim RW, Rozear MP, Middleton LT, et al. 1997. Confirmation of a second locus for CMT2 and evidence for additional genetic heterogeneity. Neurogenetics 1: 89 – 93. | en_US |
dc.identifier.citedreference | Latour P, Thauvin‐Robinet C, Baudelet‐Méry C, Soichot P, Cusin V, Faivre L, Locatelli M‐C, Mayençon M, Sarcey A, Broussolle E, Camu W, David A, et al. 2010. A major determinant for binding and aminoacylation of tRNA(Ala) in cytoplasmic Alanyl‐tRNA synthetase is mutated in dominant axonal Charcot–Marie–Tooth disease. Am J Hum Genet 86: 77 – 82. | en_US |
dc.identifier.citedreference | Lee HJ, Park J, Nakhro K, Park JM, Hur Y‐M, Choi B‐O, Chung KW. 2012. Two novel mutations of GARS in Korean families with distal hereditary motor neuropathy type V. J Peripher Nerv Syst 17: 418 – 421. | en_US |
dc.identifier.citedreference | MacArthur DG, Manolio TA, Dimmock DP, Rehm HL, Shendure J, Abecasis GR, Adams DR, Altman RB, Antonarakis SE, Ashley EA, Barrett JC, Biesecker LG, et al. 2014. Guidelines for investigating causality of sequence variants in human disease. Nature 508: 469 – 476. | en_US |
dc.identifier.citedreference | McLaughlin HM, Sakaguchi R, Giblin W, NIH Intramural Sequencing Center, Wilson TE, Biesecker L, Lupski JR, Talbot K, Vance JM, Züchner S, Lee Y‐C, Kennerson M, et al. 2011. A recurrent loss‐of‐function alanyl‐tRNA synthetase (AARS ) mutation in patients with Charcot–Marie–Tooth disease type 2 N (CMT2 N). Hum Mut 33: 244 – 253. | en_US |
dc.identifier.citedreference | McLaughlin HM, Sakaguchi R, Liu C, Igarashi T, Pehlivan D, Chu K, Iyer R, Cruz P, Cherukuri PF, Hansen NF, Mullikin JC, Biesecker LG, et al. 2010. Compound heterozygosity for loss‐of‐function lysyl‐tRNA synthetase mutations in a patient with peripheral neuropathy. Am J Hum Genet 87: 560 – 566. | en_US |
dc.identifier.citedreference | Mersiyanova IV, Perepelov AV, Polyakov AV, Sitnikov VF, Dadali EL, Oparin RB, Petrin AN, Evgrafov OV. 2000. A new variant of Charcot–Marie–Tooth disease type 2 is probably the result of a mutation in the neurofilament‐light gene. Am J Hum Genet 67: 37 – 46. | en_US |
dc.identifier.citedreference | Millecamps S, Julien J‐P. 2013. Axonal transport deficits and neurodegenerative diseases. Nat Rev Neurosci 14: 161 – 176. | en_US |
dc.identifier.citedreference | Motley WW, Seburn KL, Nawaz MH, Miers KE, Cheng J, Antonellis A, Green ED, Talbot K, Yang X‐L, Fischbeck KH, Burgess RW. 2011. Charcot–Marie–Tooth‐linked mutant GARS is toxic to peripheral neurons independent of wild‐type GARS levels. PLoS Genet 7: e1002399. | en_US |
dc.identifier.citedreference | Motley WW, Talbot K, Fischbeck KH. 2010. GARS axonopathy: not every neuron's cup of tRNA. Trends Neurosci 33: 59 – 66. | en_US |
dc.identifier.citedreference | Nangle LA, Zhang W, Xie W, Yang X‐L, Schimmel P. 2007. Charcot–Marie–Tooth disease‐associated mutant tRNA synthetases linked to altered dimer interface and neurite distribution defect. Proc Natl Acad Sci USA 104: 11239 – 11244. | en_US |
dc.identifier.citedreference | Patel PI, Roa BB, Welcher AA, Schoener‐Scott R, Trask BJ, Pentao L, Snipes GJ, Garcia CA, Francke U, Shooter EM, Lupski JR, Suter U. 1992. The gene for the peripheral myelin protein PMP‐22 is a candidate for Charcot–Marie–Tooth disease type 1 A. Nat Genet 1: 159 – 165. | en_US |
dc.identifier.citedreference | Antonellis A, Green ED. 2008. The role of aminoacyl‐tRNA synthetases in genetic diseases. Annu Rev Genom Hum Genet 9: 87 – 107. | en_US |
dc.identifier.citedreference | Ray PS, Sullivan JC, Jia J, Francis J, Finnerty JR, Fox PL. 2011. Evolution of function of a fused metazoan tRNA synthetase. Mol Biol Evol 28: 437 – 447. | en_US |
dc.identifier.citedreference | Reilly MM, Murphy SM, Laurà M. 2011. Charcot–Marie–Tooth disease. J Peripher Nervous Sys 16: 1 – 14. | en_US |
dc.identifier.citedreference | Rohkamm B, Reilly MM, Lochmüller H, Schlotter‐Weigel B, Barisic N, Schöls L, Nicholson G, Pareyson D, Laurà M, Janecke AR, Miltenberger‐Miltenyi G, John E, et al. 2007. Further evidence for genetic heterogeneity of distal HMN type V, CMT2 with predominant hand involvement and Silver syndrome. J Neurolog Sci 263: 100 – 106. | en_US |
dc.identifier.citedreference | Salazar‐Grueso EF, Kim S, Kim H. 1991. Embryonic mouse spinal cord motor neuron hybrid cells. Neuroreport 2: 505 – 508. | en_US |
dc.identifier.citedreference | Sambuughin N, Sivakumar K, Selenge B, Lee HS, Friedlich D, Baasanjav D, Dalakas MC, Goldfarb LG. 1998. Autosomal dominant distal spinal muscular atrophy type V (dSMA‐V) and Charcot–Marie–Tooth disease type 2 D (CMT2 D) segregate within a single large kindred and map to a refined region on chromosome 7p15. J Neurolog Sci 161: 23 – 28. | en_US |
dc.identifier.citedreference | Schreier AA, Schimmel PR. 1972. Transfer ribonucleic acid synthetase catalyzed deacylation of aminoacyl transfer ribonucleic acid in the absence of adenosine monophosphate and pyrophosphate. Biochemistry 11: 1582 – 1589. | en_US |
dc.identifier.citedreference | Seburn KL, Nangle LA, Cox GA, Schimmel P, Burgess RW. 2006. An active dominant mutation of glycyl‐tRNA synthetase causes neuropathy in a Charcot–Marie–Tooth 2D mouse model. Neuron 51: 715 – 726. | en_US |
dc.identifier.citedreference | Skre H. 1974. Genetic and clinical aspects of Charcot–Marie–Tooth's disease. Clin Genet 6: 98 – 118. | en_US |
dc.identifier.citedreference | Stum M, McLaughlin HM, Kleinbrink EL, Miers KE, Ackerman SL, Seburn KL, Antonellis A, Burgess RW. 2011. An assessment of mechanisms underlying peripheral axonal degeneration caused by aminoacyl‐tRNA synthetase mutations. Mol Cell Neurosci 46: 432 – 443. | en_US |
dc.identifier.citedreference | Timmerman V, Strickland AV, Züchner S. 2014. Genetics of Charcot–Marie–Tooth (CMT) disease within the frame of the Human Genome Project success. Genes 5: 13 – 32. | en_US |
dc.identifier.citedreference | Turner RJ, Lovato M, Schimmel P. 2000. One of two genes encoding glycyl‐tRNA synthetase in Saccharomyces cerevisiae provides mitochondrial and cytoplasmic functions. J Biol Chem 275: 27681 – 27688. | en_US |
dc.identifier.citedreference | Vester A, Velez‐Ruiz G, McLaughlin HM, NISC Comparative Sequencing Program, Lupski JR, Talbot K, Vance JM, Züchner S, Roda RH, Fischbeck KH, Biesecker LG, Nicholson G, et al. 2012. A loss‐of‐function variant in the human histidyl‐tRNA synthetase (HARS) gene is neurotoxic in vivo. Hum Mut 34: 191 – 199. | en_US |
dc.identifier.citedreference | Wallen RC, Antonellis A. 2013. To charge or not to charge: mechanistic insights into neuropathy‐associated tRNA synthetase mutations. Curr Opin Genet Dev 23: 302 – 309. | en_US |
dc.identifier.citedreference | Xie W, Nangle LA, Zhang W, Schimmel P, Yang X‐L. 2007. Long‐range structural effects of a Charcot–Marie–Tooth disease‐causing mutation in human glycyl‐tRNA synthetase. Proc Natl Acad Sci USA 104: 9976 – 9981. | en_US |
dc.identifier.citedreference | Züchner S, Mersiyanova IV, Muglia M, Bissar‐Tadmouri N, Rochelle J, Dadali EL, Zappia M, Nelis E, Patitucci A, Senderek J, Parman Y, Evgrafov O, et al. 2004. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot–Marie–Tooth neuropathy type 2A. Nat Genet 36: 449 – 451. | en_US |
dc.identifier.citedreference | Abe A, Hayasaka K. 2009. The GARS gene is rarely mutated in Japanese patients with Charcot–Marie–Tooth neuropathy. J Hum Genet 54: 310 – 312. | en_US |
dc.identifier.citedreference | Achilli F, Bros‐Facer V, Williams HP, Banks GT, AlQatari M, Chia R, Tucci V, Groves M, Nickols CD, Seburn KL, Kendall R, Cader MZ, et al. 2009. An ENU‐induced mutation in mouse glycyl‐tRNA synthetase (GARS) causes peripheral sensory and motor phenotypes creating a model of Charcot–Marie‐Tooth type 2 D peripheral neuropathy. Dis Models Mech 2: 359 – 373. | en_US |
dc.identifier.citedreference | Antonellis A, Ellsworth RE, Sambuughin N, Puls I, Abel A, Lee‐Lin S‐Q, Jordanova A, Kremensky I, Christodoulou K, Middleton LT, Sivakumar K, Ionasescu V, et al. 2003. Glycyl tRNA synthetase mutations in Charcot–Marie–Tooth disease type 2 D and distal spinal muscular atrophy type V. Am J Hum Genet 72: 1293 – 1299. | en_US |
dc.identifier.citedreference | Antonellis A, Lee‐Lin SQ, Wasterlain A, Leo P, Quezado M, Goldfarb LG, Myung K, Burgess S, Fischbeck KH, Green ED. 2006. Functional analyses of glycyl‐tRNA synthetase mutations suggest a key role for tRNA‐charging enzymes in peripheral axons. J Neurosci 26: 10397 – 10406. | en_US |
dc.identifier.citedreference | Boeke JD, Trueheart J, Natsoulis G, Fink GR. 1987. 5‐Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol 154: 164 – 175. | en_US |
dc.identifier.citedreference | Cader MZ, Ren J, James PA, Bird LE, Talbot K, Stammers DK. 2007. Crystal structure of human wildtype and S581L‐mutant glycyl‐tRNA synthetase, an enzyme underlying distal spinal muscular atrophy. FEBS letters 581: 2959 – 2964. | en_US |
dc.identifier.citedreference | Chihara T, Luginbuhl D, Luo L. 2007. Cytoplasmic and mitochondrial protein translation in axonal and dendritic terminal arborization. Nat Neurosci 10: 828 – 837. | en_US |
dc.identifier.citedreference | Christodoulou K, Kyriakides T, Hristova AH, Georgiou DM, Kalaydjieva L, Yshpekova B, Ivanova T, Weber JL, Middleton LT. 1995. Mapping of a distal form of spinal muscular atrophy with upper limb predominance to chromosome 7p. Hum Mol Genet 4: 1629 – 1632. | en_US |
dc.identifier.citedreference | Del Bo R, Locatelli F, Corti S, Scarlato M, Ghezzi S, Prelle A, Fagiolari G, Moggio M, Carpo M, Bresolin N, Comi GP. 2006. Coexistence of CMT‐2 D and distal SMA‐V phenotypes in an Italian family with a GARS gene mutation. Neurology 66: 752 – 754. | en_US |
dc.identifier.citedreference | Delarue M. 1995. Aminoacyl‐tRNA synthetases. Curr Opin Struct Biol 5: 48 – 55. | en_US |
dc.identifier.citedreference | Dyck PJ, Lambert EH. 1968. Lower motor and primary sensory neuron diseases with peroneal muscular atrophy. I. Neurologic, genetic, and electrophysiologic findings in hereditary polyneuropathies. Arch Neurol 18: 603 – 618. | en_US |
dc.identifier.citedreference | Ellsworth RE, Ionasescu V, Searby C, Sheffield VC, Braden VV, Kucaba TA, McPherson JD, Marra MA, Green ED. 1999. The CMT2 D locus: refined genetic position and construction of a bacterial clone‐based physical map. Genome Resh 9: 568 – 574. | en_US |
dc.identifier.citedreference | Fallini C, Zhang H, Su Y, Silani V, Singer RH, Rossoll W, Bassell GJ. 2011. The survival of motor neuron (SMN) protein interacts with the mRNA‐binding protein HuD and regulates localization of poly(A) mRNA in primary motor neuron axons. J Neurosci 31: 3914 – 3925. | en_US |
dc.identifier.citedreference | Froelich CA, First EA. 2011. Dominant intermediate Charcot–Marie–Tooth disorder is not due to a catalytic defect in tyrosyl‐tRNA synthetase. Biochemistry 50: 7132 – 7145. | en_US |
dc.identifier.citedreference | Giuditta A, Kaplan BB, van Minnen J, Alvarez J, Koenig E. 2002. Axonal and presynaptic protein synthesis: new insights into the biology of the neuron. Trends Neurosci 25: 400 – 404. | en_US |
dc.identifier.citedreference | Gonzalez M, McLaughlin H, Houlden H, Guo M, Yo‐Tsen L, Hadjivassilious M, Speziani F, Yang X‐L, Antonellis A, Reilly MM, Züchner S; Inherited Neuropathy Consortium (INC). 2013. Exome sequencing identifies a significant variant in methionyl‐tRNA synthetase (MARS) in a family with late‐onset CMT2. J Neurol Neurosurg Psychiatry 84: 1247 – 1249. | en_US |
dc.identifier.citedreference | Hayasaka K, Himoro M, Sato W, Takada G, Uyemura K, Shimizu N, Bird TD, Conneally PM, Chance PF. 1993. Charcot–Marie–Tooth neuropathy type 1B is associated with mutations of the myelin P0 gene. Nat Genet 5: 31 – 34. | en_US |
dc.identifier.citedreference | He W, Zhang H‐M, Chong YE, Guo M, Marshall AG, Yang X‐L. 2011. Dispersed disease‐causing neomorphic mutations on a single protein promote the same localized conformational opening. Proc Natl Acad Sci USA 108: 12307 – 12312. | en_US |
dc.identifier.citedreference | Hou YM, Westhof E, Giegé R. 1993. An unusual RNA tertiary interaction has a role for the specific aminoacylation of a transfer RNA. Proc Natl Acad Sci USA 90: 6776 – 6780. | en_US |
dc.identifier.citedreference | Ingoglia NA, Giuditta A, Zanakis MF, Babigian A, Tasaki I, Chakraborty G, Sturman JA. 1983. Incorporation of 3 H‐amino acids into proteins in a partially purified fraction of axoplasm: evidence for transfer RNA‐mediated, post‐translational protein modification in squid giant axons. J Neurosci 3: 2463 – 2473. | en_US |
dc.identifier.citedreference | Ionasescu V, Searby C, Sheffield VC, Roklina T, Nishimura D, Ionasescu R. 1996. Autosomal dominant Charcot–Marie–Tooth axonal neuropathy mapped on chromosome 7p (CMT2 D). Hum Mol Genet 5: 1373 – 1375. | en_US |
dc.identifier.citedreference | James PA, Cader MZ, Muntoni F, Childs A‐M, Crow YJ, Talbot K. 2006. Severe childhood SMA and axonal CMT due to anticodon binding domain mutations in the GARS gene. Neurology 67: 1710 – 1712. | en_US |
dc.identifier.citedreference | Jordanova A, Irobi J, Thomas FP, Van Dijck P, Meerschaert K, Dewil M, Dierick I, Jacobs A, De Vriendt E, Guergueltcheva V, Rao CV, Tournev I, et al. 2006. Disrupted function and axonal distribution of mutant tyrosyl‐tRNA synthetase in dominant intermediate Charcot–Marie–Tooth neuropathy. Nat Genet 38: 197 – 202. | en_US |
dc.identifier.citedreference | Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947 – 2948. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.