Possible modification of the cooling index of interstellar helium pickup ions by electron impact ionization in the inner heliosphere
dc.contributor.author | Chen, Jun Hong | en_US |
dc.contributor.author | Bochsler, Peter | en_US |
dc.contributor.author | Möbius, Eberhard | en_US |
dc.contributor.author | Gloeckler, George | en_US |
dc.date.accessioned | 2014-11-04T16:35:24Z | |
dc.date.available | WITHHELD_11_MONTHS | en_US |
dc.date.available | 2014-11-04T16:35:24Z | |
dc.date.issued | 2014-09 | en_US |
dc.identifier.citation | Chen, Jun Hong; Bochsler, Peter; Möbius, Eberhard ; Gloeckler, George (2014). "Possible modification of the cooling index of interstellar helium pickup ions by electron impact ionization in the inner heliosphere." Journal of Geophysical Research: Space Physics 119(9): 7142-7150. | en_US |
dc.identifier.issn | 2169-9380 | en_US |
dc.identifier.issn | 2169-9402 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/109291 | |
dc.description.abstract | Interstellar neutrals penetrating into the inner heliosphere are ionized by photoionization, charge exchange with solar wind ions, and electron impact ionization. These processes comprise the first step in the evolution of interstellar pickup ion (PUI) distributions. Typically, PUI distributions have been described in terms of velocity distribution functions that cool adiabatically under solar wind expansion, with a cooling index of 3/2. Recently, the cooling index has been determined experimentally in observations of He PUI distributions with Advanced Composition Explorer (ACE)/Solar Wind Ion Composition Spectrometer and found to vary substantially over the solar cycle. The experimental determination of the cooling index depends on the knowledge of the ionization rates and their spatial variation. Usually, ionization rates increase with 1/ r 2 as neutral particles approach the Sun, which is not exactly true for electron impact ionization, because the electron temperature increases with decreasing distance from the Sun due to the complexity of its distributions and different radial gradients in temperature. This different dependence on distance may become important in the study of the evolution of PUI distributions and is suspected as one of the potential reasons for the observed variation of the cooling index. Therefore, we investigate in this paper the impact of electron ionization on the variability of the cooling index. We find that the deviation of the electron ionization rate from the canonical 1 /r 2 behavior of other ionization processes plays only a minor role. Key Points The influence of electron impact ionization is negligible Its influence is also small even in the compressions | en_US |
dc.publisher | Springer | en_US |
dc.publisher | Wiley Periodicals, Inc. | en_US |
dc.subject.other | Electron Impact Ionization | en_US |
dc.subject.other | Pickup Ions | en_US |
dc.subject.other | Adiabatic Cooling | en_US |
dc.subject.other | Stream Interaction Regions | en_US |
dc.title | Possible modification of the cooling index of interstellar helium pickup ions by electron impact ionization in the inner heliosphere | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Astronomy and Astrophysics | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/109291/1/jgra51316.pdf | |
dc.identifier.doi | 10.1002/2014JA020357 | en_US |
dc.identifier.source | Journal of Geophysical Research: Space Physics | en_US |
dc.identifier.citedreference | Mobius, E., D. Hovestadt, B. Klecker, M. Scholer, G. Gloeckler, and F. M. Ipavich ( 1985 ), Direct observation of He + pick‐up ions of interstellar origin in the solar‐wind, Nature, 318 ( 6045 ), 426 – 429. | en_US |
dc.identifier.citedreference | Bzowski, M., J. M. Sokół, M. Tokumaru, K. Fujiki, E. Quémerais, R. Lallement, S. Ferron, P. Bochsler, and D. J. McComas ( 2013b ), Solar parameters for modeling the interplanetary background, in Cross‐Calibration of Far UV Spectra of Solar System Objects and the Heliosphere, ISSI Sci. Rep. Ser., vol. 13, edited by R. M. Bonnet, E. Quémerais, and M. Snow, chap. 3, pp. 67 – 138, Springer, New York, doi: 10.1007/978‐1‐4614‐6384‐9_3(astro‐ph/1112.2967v1). | en_US |
dc.identifier.citedreference | Chen, J. H., E. Möbius, G. Gloeckler, P. Bochsler, M. Bzowski, P. A. Isenberg, and J. M. Sokół ( 2013 ), Observational study of the cooling behavior of interstellar helium pick up ions in the inner heliosphere, J. Geophys. Res. Space Phys., 118, 3946 – 3953, doi: 10.1002/jgra.50391. | en_US |
dc.identifier.citedreference | Feldman, W. C., J. R. Asbridge, S. J. Bame, J. T. Gosling, and D. S. Lemons ( 1978 ), Electron heating within interaction zones of simple high‐speed solar wind streams, J. Geophys. Res., 83, 5297 – 5303, doi: 10.1029/JA083iA11p05297. | en_US |
dc.identifier.citedreference | Feldman, W. C., J. R. Asbridge, S. J. Bame, J. T. Gosling, and D. S. Lemons ( 1979 ), The core electron temperature profile between 0.5 and 1.0 AU in the steady‐state high speed solar wind, J. Geophys. Res., 84, 4463 – 4467, doi: 10.1029/JA084iA08p04463. | en_US |
dc.identifier.citedreference | Geiss, J., G. Gloeckler, U. Mall, R. Vonsteiger, A. B. Galvin, and K. W. Ogilvie ( 1994 ), Interstellar oxygen, nitrogen and neon in the heliosphere, Astron. Astrophys., 282 ( 3 ), 924 – 933. | en_US |
dc.identifier.citedreference | Geiss, J., G. Gloeckler, L. A. Fisk, and R. von Steiger ( 1995 ), C + pickup ions in the heliosphere and their origin, J. Geophys. Res., 100, 23,373 – 23,378, doi: 10.1029/95JA03051. | en_US |
dc.identifier.citedreference | Gloeckler, G., J. Geiss, H. Balsiger, L. A. Fisk, A. B. Galvin, F. M. Ipavich, K. W. Ogilvie, R. Vonsteiger, and B. Wilken ( 1993 ), Detection of interstellar pick‐up hydrogen in the solar‐system, Science, 261 ( 5117 ), 70 – 73. | en_US |
dc.identifier.citedreference | Gloeckler, G., et al. ( 1998 ), Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft, Space Sci. Rev., 86, 497 – 539. | en_US |
dc.identifier.citedreference | Gloeckler, G., L. A. Fisk, J. Geiss, N. A. Schwadron, and T. H. Zurbuchen ( 2000 ), Elemental composition of the inner source pickup ions, J. Geophys. Res., 105, 7459 – 7464, doi: 10.1029/1999JA000224. | en_US |
dc.identifier.citedreference | Issautier, K., N. Meyer‐Vernet, M. Moncuquet, and S. Hoang ( 1998 ), Solar wind radial and latitudinal structure: Electron density and core temperature from ULYSSES thermal noise spectroscopy, J. Geophys. Res., 103, 1969 – 1979, doi: 10.1029/97JA02661. | en_US |
dc.identifier.citedreference | Lennon, M., K. Bell, H. Gilbody, J. Hughes, A. Kingston, M. Murray, and F. Smith ( 1988 ), Recommended data on the electron impact ionization of atoms and ions: Fluorine to nickel, J. Phys. Chem. Ref. Data, 17 ( 3 ), 1285 – 1363. | en_US |
dc.identifier.citedreference | Maksimovic, M., S. Hoang, and J. L. Bougeret ( 1996 ), Properties of the solar wind electrons between 1 and 3.3 AU from ULYSSES thermal noise measurements, in Solar Wind Eight, AIP Conf. Proc., 382, 297 – 300. | en_US |
dc.identifier.citedreference | Marsch, E., K. M. Thieme, H. Rosenbauer, and W. G. Pilipp ( 1989 ), Cooling of solar wind electrons inside 0.3 AU, J. Geophys. Res., 94, 6893 – 6898, doi: 10.1029/JA094iA06p06893. | en_US |
dc.identifier.citedreference | Gary, S. P., E. E. Scime, J. L. Phillips, and W. C. Feldman ( 1994 ), The whistler heat flux instability: Threshold conditions in the solar wind, J. Geophys. Res., 99, 23,391 – 23,399, doi: 10.1029/94JA02067. | en_US |
dc.identifier.citedreference | Montgomery, M. D., S. J. Bame, and A. J. Hundhausen ( 1968 ), Solar wind electrons: Vela 4 measurements, J. Geophys. Res., 73, 4999 – 5003, doi: 10.1029/JA073i015p04999. | en_US |
dc.identifier.citedreference | Ogilvie, K. W., and J. D. Scudder ( 1978 ), The radial gradients and collisional properties of solar wind electrons, J. Geophys. Res., 83, 3776 – 3782, doi: 10.1029/JA083iA08p03776. | en_US |
dc.identifier.citedreference | Phillips, J. L., S. J. Bame, S. P. Gary, J. T. Gosling, E. E. Scime, and R. J. Forsyth ( 1995 ), Radial and meridional trends in solar wind thermal electron temperature and anisotropy: ULYSSES, Space. Sci. Rev., 72, 109 – 112. | en_US |
dc.identifier.citedreference | Pilipp, W. G., K.‐H. Muehlhaeuser, H. Miggenrieder, H. Rosenbauer, and R. Schwenn ( 1990 ), Large‐scale variations of thermal electron parameters in the solar wind between 0.3 and 1 AU, J. Geophys. Res., 95, 6305 – 6329, doi: 10.1029/JA095iA05p06305. | en_US |
dc.identifier.citedreference | Rucinski, D., and H. Fahr ( 1989 ), The influence of electron impact ionization on the distribution of interstellar helium in the inner heliosphere‐possible consequences for determination of interstellar helium parameters, Astron. Astrophys., 224, 290 – 298. | en_US |
dc.identifier.citedreference | Sittler, E. C., Jr., J. D. Scudder, and J. Jessen ( 1981 ), Radial variation of the solar wind thermal electrons between 1.36 and 2.25 AU: Voyager 2, in Solar Wind Four, Rep. MPAE‐W‐100‐81‐31, edited by H. Rosenbauer, pp. 257 – 263, Max‐Planck‐Inst. fiir Aeron., Katlenburg‐Lindau, Germany. | en_US |
dc.identifier.citedreference | Vasyliunas, V. M., and G. L. Siscoe ( 1976 ), On the flux and energy spectrum of interstellar ions in solar system, J. Geophys. Res., 81 ( 7 ), 1247 – 1252, doi: 10.1029/JA081i007p01247. | en_US |
dc.identifier.citedreference | Voronov, G. ( 1997 ), A practical fit formula for ionization rate coefficients of atoms and ions by electron impact: Z = 1–28, At. Data Nucl. Data Tables, 65 ( 1 ), 1 – 35. | en_US |
dc.identifier.citedreference | Bell, K., H. Gilbody, J. Hughes, A. Kingston, and F. Smith ( 1983 ), Recommended data on the electron impact ionization of light atoms and ions, J. Phys. Chem Ref Data, 12 ( 4 ), 891 – 916. | en_US |
dc.identifier.citedreference | Bzowski, M., et al. ( 2012 ), Neutral interstellar helium parameters based on IBEX‐Lo observations and test particle calculations, Astrophys. J. Suppl. Ser., 198, 12. | en_US |
dc.identifier.citedreference | Bzowski, M., J. M. Sokół, M. A. Kubiak, and H. Kucharek ( 2013a ), Modulation of neutral interstellar He, Ne, O in the heliosphere. Survival probabilities and abundances at IBEX, Astron. Astrophys., 557, 50. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.