Show simple item record

Possible modification of the cooling index of interstellar helium pickup ions by electron impact ionization in the inner heliosphere

dc.contributor.authorChen, Jun Hongen_US
dc.contributor.authorBochsler, Peteren_US
dc.contributor.authorMöbius, Eberharden_US
dc.contributor.authorGloeckler, Georgeen_US
dc.date.accessioned2014-11-04T16:35:24Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2014-11-04T16:35:24Z
dc.date.issued2014-09en_US
dc.identifier.citationChen, Jun Hong; Bochsler, Peter; Möbius, Eberhard ; Gloeckler, George (2014). "Possible modification of the cooling index of interstellar helium pickup ions by electron impact ionization in the inner heliosphere." Journal of Geophysical Research: Space Physics 119(9): 7142-7150.en_US
dc.identifier.issn2169-9380en_US
dc.identifier.issn2169-9402en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/109291
dc.description.abstractInterstellar neutrals penetrating into the inner heliosphere are ionized by photoionization, charge exchange with solar wind ions, and electron impact ionization. These processes comprise the first step in the evolution of interstellar pickup ion (PUI) distributions. Typically, PUI distributions have been described in terms of velocity distribution functions that cool adiabatically under solar wind expansion, with a cooling index of 3/2. Recently, the cooling index has been determined experimentally in observations of He PUI distributions with Advanced Composition Explorer (ACE)/Solar Wind Ion Composition Spectrometer and found to vary substantially over the solar cycle. The experimental determination of the cooling index depends on the knowledge of the ionization rates and their spatial variation. Usually, ionization rates increase with 1/ r 2 as neutral particles approach the Sun, which is not exactly true for electron impact ionization, because the electron temperature increases with decreasing distance from the Sun due to the complexity of its distributions and different radial gradients in temperature. This different dependence on distance may become important in the study of the evolution of PUI distributions and is suspected as one of the potential reasons for the observed variation of the cooling index. Therefore, we investigate in this paper the impact of electron ionization on the variability of the cooling index. We find that the deviation of the electron ionization rate from the canonical 1 /r 2 behavior of other ionization processes plays only a minor role. Key Points The influence of electron impact ionization is negligible Its influence is also small even in the compressionsen_US
dc.publisherSpringeren_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherElectron Impact Ionizationen_US
dc.subject.otherPickup Ionsen_US
dc.subject.otherAdiabatic Coolingen_US
dc.subject.otherStream Interaction Regionsen_US
dc.titlePossible modification of the cooling index of interstellar helium pickup ions by electron impact ionization in the inner heliosphereen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelAstronomy and Astrophysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109291/1/jgra51316.pdf
dc.identifier.doi10.1002/2014JA020357en_US
dc.identifier.sourceJournal of Geophysical Research: Space Physicsen_US
dc.identifier.citedreferenceMobius, E., D. Hovestadt, B. Klecker, M. Scholer, G. Gloeckler, and F. M. Ipavich ( 1985 ), Direct observation of He + pick‐up ions of interstellar origin in the solar‐wind, Nature, 318 ( 6045 ), 426 – 429.en_US
dc.identifier.citedreferenceBzowski, M., J. M. Sokół, M. Tokumaru, K. Fujiki, E. Quémerais, R. Lallement, S. Ferron, P. Bochsler, and D. J. McComas ( 2013b ), Solar parameters for modeling the interplanetary background, in Cross‐Calibration of Far UV Spectra of Solar System Objects and the Heliosphere, ISSI Sci. Rep. Ser., vol. 13, edited by R. M. Bonnet, E. Quémerais, and M. Snow, chap. 3, pp. 67 – 138, Springer, New York, doi: 10.1007/978‐1‐4614‐6384‐9_3(astro‐ph/1112.2967v1).en_US
dc.identifier.citedreferenceChen, J. H., E. Möbius, G. Gloeckler, P. Bochsler, M. Bzowski, P. A. Isenberg, and J. M. Sokół ( 2013 ), Observational study of the cooling behavior of interstellar helium pick up ions in the inner heliosphere, J. Geophys. Res. Space Phys., 118, 3946 – 3953, doi: 10.1002/jgra.50391.en_US
dc.identifier.citedreferenceFeldman, W. C., J. R. Asbridge, S. J. Bame, J. T. Gosling, and D. S. Lemons ( 1978 ), Electron heating within interaction zones of simple high‐speed solar wind streams, J. Geophys. Res., 83, 5297 – 5303, doi: 10.1029/JA083iA11p05297.en_US
dc.identifier.citedreferenceFeldman, W. C., J. R. Asbridge, S. J. Bame, J. T. Gosling, and D. S. Lemons ( 1979 ), The core electron temperature profile between 0.5 and 1.0 AU in the steady‐state high speed solar wind, J. Geophys. Res., 84, 4463 – 4467, doi: 10.1029/JA084iA08p04463.en_US
dc.identifier.citedreferenceGeiss, J., G. Gloeckler, U. Mall, R. Vonsteiger, A. B. Galvin, and K. W. Ogilvie ( 1994 ), Interstellar oxygen, nitrogen and neon in the heliosphere, Astron. Astrophys., 282 ( 3 ), 924 – 933.en_US
dc.identifier.citedreferenceGeiss, J., G. Gloeckler, L. A. Fisk, and R. von Steiger ( 1995 ), C + pickup ions in the heliosphere and their origin, J. Geophys. Res., 100, 23,373 – 23,378, doi: 10.1029/95JA03051.en_US
dc.identifier.citedreferenceGloeckler, G., J. Geiss, H. Balsiger, L. A. Fisk, A. B. Galvin, F. M. Ipavich, K. W. Ogilvie, R. Vonsteiger, and B. Wilken ( 1993 ), Detection of interstellar pick‐up hydrogen in the solar‐system, Science, 261 ( 5117 ), 70 – 73.en_US
dc.identifier.citedreferenceGloeckler, G., et al. ( 1998 ), Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft, Space Sci. Rev., 86, 497 – 539.en_US
dc.identifier.citedreferenceGloeckler, G., L. A. Fisk, J. Geiss, N. A. Schwadron, and T. H. Zurbuchen ( 2000 ), Elemental composition of the inner source pickup ions, J. Geophys. Res., 105, 7459 – 7464, doi: 10.1029/1999JA000224.en_US
dc.identifier.citedreferenceIssautier, K., N. Meyer‐Vernet, M. Moncuquet, and S. Hoang ( 1998 ), Solar wind radial and latitudinal structure: Electron density and core temperature from ULYSSES thermal noise spectroscopy, J. Geophys. Res., 103, 1969 – 1979, doi: 10.1029/97JA02661.en_US
dc.identifier.citedreferenceLennon, M., K. Bell, H. Gilbody, J. Hughes, A. Kingston, M. Murray, and F. Smith ( 1988 ), Recommended data on the electron impact ionization of atoms and ions: Fluorine to nickel, J. Phys. Chem. Ref. Data, 17 ( 3 ), 1285 – 1363.en_US
dc.identifier.citedreferenceMaksimovic, M., S. Hoang, and J. L. Bougeret ( 1996 ), Properties of the solar wind electrons between 1 and 3.3 AU from ULYSSES thermal noise measurements, in Solar Wind Eight, AIP Conf. Proc., 382, 297 – 300.en_US
dc.identifier.citedreferenceMarsch, E., K. M. Thieme, H. Rosenbauer, and W. G. Pilipp ( 1989 ), Cooling of solar wind electrons inside 0.3 AU, J. Geophys. Res., 94, 6893 – 6898, doi: 10.1029/JA094iA06p06893.en_US
dc.identifier.citedreferenceGary, S. P., E. E. Scime, J. L. Phillips, and W. C. Feldman ( 1994 ), The whistler heat flux instability: Threshold conditions in the solar wind, J. Geophys. Res., 99, 23,391 – 23,399, doi: 10.1029/94JA02067.en_US
dc.identifier.citedreferenceMontgomery, M. D., S. J. Bame, and A. J. Hundhausen ( 1968 ), Solar wind electrons: Vela 4 measurements, J. Geophys. Res., 73, 4999 – 5003, doi: 10.1029/JA073i015p04999.en_US
dc.identifier.citedreferenceOgilvie, K. W., and J. D. Scudder ( 1978 ), The radial gradients and collisional properties of solar wind electrons, J. Geophys. Res., 83, 3776 – 3782, doi: 10.1029/JA083iA08p03776.en_US
dc.identifier.citedreferencePhillips, J. L., S. J. Bame, S. P. Gary, J. T. Gosling, E. E. Scime, and R. J. Forsyth ( 1995 ), Radial and meridional trends in solar wind thermal electron temperature and anisotropy: ULYSSES, Space. Sci. Rev., 72, 109 – 112.en_US
dc.identifier.citedreferencePilipp, W. G., K.‐H. Muehlhaeuser, H. Miggenrieder, H. Rosenbauer, and R. Schwenn ( 1990 ), Large‐scale variations of thermal electron parameters in the solar wind between 0.3 and 1 AU, J. Geophys. Res., 95, 6305 – 6329, doi: 10.1029/JA095iA05p06305.en_US
dc.identifier.citedreferenceRucinski, D., and H. Fahr ( 1989 ), The influence of electron impact ionization on the distribution of interstellar helium in the inner heliosphere‐possible consequences for determination of interstellar helium parameters, Astron. Astrophys., 224, 290 – 298.en_US
dc.identifier.citedreferenceSittler, E. C., Jr., J. D. Scudder, and J. Jessen ( 1981 ), Radial variation of the solar wind thermal electrons between 1.36 and 2.25 AU: Voyager 2, in Solar Wind Four, Rep. MPAE‐W‐100‐81‐31, edited by H. Rosenbauer, pp. 257 – 263, Max‐Planck‐Inst. fiir Aeron., Katlenburg‐Lindau, Germany.en_US
dc.identifier.citedreferenceVasyliunas, V. M., and G. L. Siscoe ( 1976 ), On the flux and energy spectrum of interstellar ions in solar system, J. Geophys. Res., 81 ( 7 ), 1247 – 1252, doi: 10.1029/JA081i007p01247.en_US
dc.identifier.citedreferenceVoronov, G. ( 1997 ), A practical fit formula for ionization rate coefficients of atoms and ions by electron impact: Z  = 1–28, At. Data Nucl. Data Tables, 65 ( 1 ), 1 – 35.en_US
dc.identifier.citedreferenceBell, K., H. Gilbody, J. Hughes, A. Kingston, and F. Smith ( 1983 ), Recommended data on the electron impact ionization of light atoms and ions, J. Phys. Chem Ref Data, 12 ( 4 ), 891 – 916.en_US
dc.identifier.citedreferenceBzowski, M., et al. ( 2012 ), Neutral interstellar helium parameters based on IBEX‐Lo observations and test particle calculations, Astrophys. J. Suppl. Ser., 198, 12.en_US
dc.identifier.citedreferenceBzowski, M., J. M. Sokół, M. A. Kubiak, and H. Kucharek ( 2013a ), Modulation of neutral interstellar He, Ne, O in the heliosphere. Survival probabilities and abundances at IBEX, Astron. Astrophys., 557, 50.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.