Show simple item record

Magnetization transfer in lamellar liquid crystals

dc.contributor.authorMalyarenko, Dariya I.en_US
dc.contributor.authorZimmermann, Ellen M.en_US
dc.contributor.authorAdler, Jeremyen_US
dc.contributor.authorSwanson, Scott D.en_US
dc.date.accessioned2014-11-04T16:35:25Z
dc.date.availableWITHHELD_13_MONTHSen_US
dc.date.available2014-11-04T16:35:25Z
dc.date.issued2014-11en_US
dc.identifier.citationMalyarenko, Dariya I.; Zimmermann, Ellen M.; Adler, Jeremy; Swanson, Scott D. (2014). "Magnetization transfer in lamellar liquid crystals." Magnetic Resonance in Medicine 72(5): 1427-1434.en_US
dc.identifier.issn0740-3194en_US
dc.identifier.issn1522-2594en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/109294
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherMagnetization Transferen_US
dc.subject.otherMT Phantomen_US
dc.subject.otherSuper‐Lorentzianen_US
dc.subject.otherMRIen_US
dc.titleMagnetization transfer in lamellar liquid crystalsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109294/1/mrm25034.pdf
dc.identifier.doi10.1002/mrm.25034en_US
dc.identifier.sourceMagnetic Resonance in Medicineen_US
dc.identifier.citedreferenceGrad J, Bryant RG. Nuclear Magnetic Cross‐Relaxation Spectroscopy. J Magn Reson 1990; 90: 1 – 8.en_US
dc.identifier.citedreferenceSwanson SD. Transient and steady‐state effects of indirect RF saturation in heterogeneous systems. In Proceedings of the 11th Annual Meeting of SMRM, Berlin, Germany, 1992.en_US
dc.identifier.citedreferenceWennerstrom H. Proton nuclear magnetic‐resonance lineshapes in lamellar liquid‐crystals. Chem Phys Lett 1973; 18: 41 – 44.en_US
dc.identifier.citedreferenceBloom M, Burnell EE, Roeder S, Valic MI. Nuclear magnetic‐resonance line‐shapes in lyotropic liquid‐crystals and related systems. J Chem Phys 1977; 66: 3012 – 3020.en_US
dc.identifier.citedreferenceMorrison C, Stanisz G, Henkelman RM. Modeling magnetization‐transfer for biological‐like systems using a semisolid pool with a super‐Lorentzian lineshape and dipolar reservoir. J Magn Reson B 1995; 108: 103 – 113.en_US
dc.identifier.citedreferenceStanisz GJ, Odrobina EE, Pun J, Escaravage M, Graham SJ, Bronskill MJ, Henkelman RM. T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med 2005; 54: 507 – 512.en_US
dc.identifier.citedreferenceWilhelm MJ, Ong HH, Wehrli SL, Li C, Tsai P‐H, Hackney DB, Wehrli FW. Direct magnetic resonance detection of myelin and prospects for quantitative imaging of myelin density. Proc Natl Acad Sci U S A 2012; 109: 9605 – 9610.en_US
dc.identifier.citedreferenceSeelig J. Deuterium magnetic resonance: theory and application to lipid membranes. Q Rev Biophys 1977; 10: 353 – 418.en_US
dc.identifier.citedreferenceBrown MF, Ribeiro AA, Williams GD. New view of lipid bilayer dynamics from H‐2 and C‐13 NMR relaxation‐time measurements. Proc Natl Acad Sci U S A 1983; 80: 4325 – 4329.en_US
dc.identifier.citedreferenceCeckler TL, Wolff SD, Yip V, Simon SA, Balaban RS. Dynamic and chemical factors affecting water proton relaxation by macromolecules. J Magn Reson 1992; 98: 637 – 645.en_US
dc.identifier.citedreferenceFralix TA, Ceckler TL, Wolff SD, Simon SA, Balaban RS. Lipid bilayer and water proton magnetization transfer ‐ effect of cholesterol. Magn Reson Med 1991; 18: 214 – 223.en_US
dc.identifier.citedreferenceKucharczyk W, Macdonald PM, Stanisz GJ, Henkelman RM. Relaxivity and magnetization‐transfer of white‐matter lipids at MR‐imaging ‐ importance of cerebrosides and pH. Radiology 1994; 192: 521 – 529.en_US
dc.identifier.citedreferenceQuist PO, Halle B, Furo I. Nuclear‐spin relaxation in a hexagonal lyotropic liquid‐crystal. J Chem Physics 1991; 95: 6945 – 6961.en_US
dc.identifier.citedreferenceHalle B, Quist PO, Furo I. Microstructure and dynamics in lyotropic liquid‐crystals ‐ principles and applications of nuclear‐spin relaxation. Liq Cryst 1993; 14: 227 – 263.en_US
dc.identifier.citedreferenceBerger K, Hiltrop K. Characterization of structural transitions in the SLS/decanol/water system. Colloid Polym Sci 1996; 274: 269 – 278.en_US
dc.identifier.citedreferenceMorrison C, Henkelman RM. A model for magnetization‐transfer in tissues. Magn Reson Med 1995; 33: 475 – 482.en_US
dc.identifier.citedreferenceKubo R, Tomita K. A General theory of magnetic resonance absorption. J Phys Soc Jpn 1954; 9: 888 – 919.en_US
dc.identifier.citedreferenceWennerstrom H, Lindman B, Linblom G, Tiddy GJT. Ion condensations model and nuclear magnetic resonance studies of counterion binding in lyotropic liquid crystals. J Chem Soc Faraday Trans 1 1979; 75: 663 – 668.en_US
dc.identifier.citedreferenceTiddy GJT. NMR relaxation times of the lamellar phases of the system sodium caprylate/decanol/water. J Chem Soc Faraday Trans 1 1972; 68: 369 – 380.en_US
dc.identifier.citedreferenceSled JG, Levesque I, Santos AC, Francis SJ, Narayanan S, Brass SD, Arnold DL, Pike GB. Regional variations in normal brain shown by quantitative magnetization transfer imaging. Magn Reson Med 2004; 51: 299 – 303.en_US
dc.identifier.citedreferenceHenkelman RM, Stanisz GJ, Graham SJ. Magnetization transfer in MRI: a review. NMR Biomed 2001; 14: 57 – 64.en_US
dc.identifier.citedreferenceFilippi M, Absinta M, Rocca MA. Future MRI tools in multiple sclerosis. J Neurol Sci 2013; 331: 14 – 18.en_US
dc.identifier.citedreferenceAdler J, Swanson SD, Schmiedlin‐Ren P, Higgins PDR, Golembeski CP, Polydorides AD, McKenna BJ, Hussain HK, Verrot TM, Zimmermann EM. Magnetization transfer helps detect intestinal fibrosis in an animal model of Crohn disease. Radiology 2011; 259: 127 – 135.en_US
dc.identifier.citedreferenceBodini B, Cercignani M, Toosy A, Stefano ND, Miller DH, Thompson AJ, Ciccarelli O. A novel approach with “skeletonised MTR” measures tract‐specific microstructural changes in early primary‐progressive MS. Hum Brain Mapp 2014; 35: 723 – 733.en_US
dc.identifier.citedreferenceMascalchi M, Ginestroni A, Bessi V, Toschi N, Padiglioni S, Ciulli S, Tessa C, Giannelli M, Bracco L, Diciotti S. Regional analysis of the magnetization transfer ratio of the brain in mild Alzheimer disease and amnestic mild cognitive impairment. Am J Neuroradiol 2013; 34: 2098 – 2104.en_US
dc.identifier.citedreferenceKadom N, Trofimova A, Vezina GL. Utility of magnetization transfer T1 imaging in children with seizures. AJNR Am J Neuroradiol 2013; 34: 895 – 898.en_US
dc.identifier.citedreferenceGrossman RI. Application of magnetization transfer imaging to multiple sclerosis. Neurology 1999; 53: S8 – S11.en_US
dc.identifier.citedreferenceFilippi M, Campi A, Dousset V, Baratti C, Martinelli V, Canal N, Scotti G, Comi G. A magnetization transfer imaging study of normal‐appearing white matter in multiple sclerosis. Neurology 1995; 45: 478 – 482.en_US
dc.identifier.citedreferenceAdler J, Rahal K, Swanson SD, et al. Anti‐tumor necrosis factor α prevents bowel fibrosis assessed by messenger RNA, histology, and magnetization transfer MRI in rats with Crohn's disease. Inflamm Bowel Dis 2013; 19: 683 – 690.en_US
dc.identifier.citedreferenceHenkelman RM, Huang XM, Xiang QS, Stanisz GJ, Swanson SD, Bronskill MJ. Quantitative interpretation of magnetization transfer. Magn Reson Med 1993; 29: 759 – 766.en_US
dc.identifier.citedreferenceSled JG, Pike GB. Quantitative imaging of magnetization transfer exchange and relaxation properties in vivo using MRI. Magn Reson Med 2001; 46: 923 – 931.en_US
dc.identifier.citedreferenceTozer D, Ramani A, Barker GJ, Davies GR, Miller DH, Tofts PS. Quantitative magnetization transfer mapping of bound protons in multiple sclerosis. Magn Reson Med 2003; 50: 83 – 91.en_US
dc.identifier.citedreferenceSchmierer K, Tozer DJ, Scaravilli F, Altmann DR, Barker GJ, Tofts PS, Miller DH. Quantitative magnetization transfer imaging in postmortem multiple sclerosis brain. J Magn Reson Imaging 2007; 26: 41 – 51.en_US
dc.identifier.citedreferenceLevesque I, Sled JG, Narayanan S, Santos AC, Brass SD, Francis SJ, Arnold DL, Pike GB. The role of edema and demyelination in chronic T1 black holes: a quantitative magnetization transfer study. J Magn Reson Imaging 2005; 21: 103 – 110.en_US
dc.identifier.citedreferenceHanyu H, Shimizu S, Tanaka Y, Kanetaka H, Iwamoto T, Abe K. Differences in magnetization transfer ratios of the hippocampus between dementia with Lewy bodies and Alzheimer's disease. Neurosci Lett 2005; 380: 166 – 169.en_US
dc.identifier.citedreferenceKiefer C, Brockhaus L, Cattapan‐Ludewig K, Ballinari P, Burren Y, Schroth G, Wiest R. Multi‐parametric classification of Alzheimer's disease and mild cognitive impairment: the impact of quantitative magnetization transfer MR imaging. Neuroimage 2009; 48: 657 – 667.en_US
dc.identifier.citedreferenceGiulietti G, Bozzali M, Figura V, Spano B, Perri R, Marra C, Lacidogna G, Giubilei F, Caltagirone C, Cercignani M. Quantitative magnetization transfer provides information complementary to grey matter atrophy in Alzheimer's disease brains. Neuroimage 2012; 59: 1114 – 1122.en_US
dc.identifier.citedreferenceRosenkrantz AB, Storey P, Gilet AG, Niver BE, Babb JS, Hajdu CH, Lee VS. Magnetization transfer contrast‐prepared MR imaging of the liver: inability to distinguish healthy from cirrhotic liver. Radiology 2011; 262: 136 – 143.en_US
dc.identifier.citedreferenceHomayoon N, Ropele S, Hofer E, Schwingenschuh P, Seiler S, Schmidt R. Microstructural tissue damage in normal appearing brain tissue accumulates with Framingham Stroke Risk Profile Score: magnetization transfer imaging results of the Austrian Stroke Prevention Study. Clin Neurol Neurosurg 2013; 115: 1317 – 1321.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.