Show simple item record

Regulatory T cells in the actinic cheilitis

dc.contributor.authorGasparoto, Thaís Helenaen_US
dc.contributor.authorSouza Malaspina, Tatiana Sallesen_US
dc.contributor.authorDamante, José Humbertoen_US
dc.contributor.authorMello, Edgard Francoen_US
dc.contributor.authorIkoma, Maura Rosane Valérioen_US
dc.contributor.authorGarlet, Gustavo Pompermaieren_US
dc.contributor.authorCosta, Maria Renata Sales Nogueiraen_US
dc.contributor.authorCavassani, Karen Angélicaen_US
dc.contributor.authorSilva, João Santanaen_US
dc.contributor.authorCampanelli, Ana Paulaen_US
dc.date.accessioned2014-11-04T16:35:31Z
dc.date.availableWITHHELD_13_MONTHSen_US
dc.date.available2014-11-04T16:35:31Z
dc.date.issued2014-11en_US
dc.identifier.citationGasparoto, Thaís Helena ; Souza Malaspina, Tatiana Salles; Damante, José Humberto ; Mello, Edgard Franco; Ikoma, Maura Rosane Valério ; Garlet, Gustavo Pompermaier; Costa, Maria Renata Sales Nogueira; Cavassani, Karen Angélica ; Silva, João Santana ; Campanelli, Ana Paula (2014). "Regulatory T cells in the actinic cheilitis." Journal of Oral Pathology & Medicine 43(10): 754-760.en_US
dc.identifier.issn0904-2512en_US
dc.identifier.issn1600-0714en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/109303
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherIL ‐10en_US
dc.subject.otherPotentially Malignant Lesionen_US
dc.subject.otherTregsen_US
dc.subject.otherActinic Cheilitisen_US
dc.titleRegulatory T cells in the actinic cheilitisen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelDentistryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109303/1/jop12207.pdf
dc.identifier.doi10.1111/jop.12207en_US
dc.identifier.sourceJournal of Oral Pathology & Medicineen_US
dc.identifier.citedreferenceStewart CA, Metheny H, Iida N, et al. Interferon‐dependent IL‐10 production by Tregs limits tumor Th17 inflammation. J Clin Invest 2013; 123: 4859 – 74.en_US
dc.identifier.citedreferenceFehervari Z, Sakaguchi S. CD4+ Tregs and immune control. J Clin Invest 2004; 114: 1209 – 17.en_US
dc.identifier.citedreferenceNakamura K, Kitani A, Fuss I, et al. TGF‐beta 1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice. J Immunol 2004; 172: 834 – 42.en_US
dc.identifier.citedreferencevon Boehmer H. Mechanisms of suppression by suppressor T cells. Nat Immunol 2005; 6: 338 – 44.en_US
dc.identifier.citedreferenceTakahashi T, Tagami T, Yamazaki S, et al. Immunologic self‐tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte‐associated antigen 4. J Exp Med 2000; 192: 303 – 10.en_US
dc.identifier.citedreferenceZou W. Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 2006; 6: 295 – 307.en_US
dc.identifier.citedreferenceGasparoto TH, de Souza Malaspina TS, Benevides L, et al. Patients with oral squamous cell carcinoma are characterized by increased frequency of suppressive regulatory T cells in the blood and tumor microenvironment. Cancer Immunol Immunother 2010; 59: 819 – 28.en_US
dc.identifier.citedreferenceSabat R, Grütz G, Warszawska K, et al. Biology of interleukin‐10. Cytokine Growth Factor Rev 2010; 21: 331 – 44.en_US
dc.identifier.citedreferenceGregori S, Goudy KS, Roncarolo MG. The cellular and molecular mechanisms of immuno‐suppression by human type 1 regulatory T cells. Front Immunol 2012; 3: 30.en_US
dc.identifier.citedreferenceKitagawa Y, Ohkura N, Sakaguchi S. Molecular determinants of regulatory T cell development: the essential roles of epigenetic changes. Front Immunol 2013; 4: 106.en_US
dc.identifier.citedreferenceTrinchieri G. Interleukin‐10 production by effector T cells: Th1 cells show self control. J Exp Med 2007; 204: 239 – 43.en_US
dc.identifier.citedreferenceO'garra A, Vieira P. T(H)1 cells control themselves by producing interleukin‐10. Nat Rev Immunol 2007; 7: 425 – 8.en_US
dc.identifier.citedreferenceZou W1, Restifo NP. T(H)17 cells in tumour immunity and immunotherapy. Nat Rev Immunol 2010; 10: 248 – 56.en_US
dc.identifier.citedreferenceGorelik L, Flavell RA. Immune‐mediated eradication of tumors through the blockade of transforming growth factor‐β signaling in T cells. Nat Med 2001; 7: 1118 – 22.en_US
dc.identifier.citedreferenceOleinika K, Nibbs RJ, Graham GJ, Fraser AR. Suppression, subversion and escape: the role of regulatory T cells in cancer progression. Clin Exp Immunol 2013; 171: 36 – 45.en_US
dc.identifier.citedreferenceTan C, Reddy V, Dannull J, et al. Impact of anti‐CD25 monoclonal antibody on dendritic cell‐tumor fusion vaccine efficacy in a murine melanoma model. J Transl Med 2013; 11: 148.en_US
dc.identifier.citedreferenceLi H, Yu JP, Cao S, et al. CD4+CD25+ regulatory T cells decreased the antitumor activity of cytokine‐induced killer (CIK) cells of lung cancer patients. J Clin Immunol 2007; 27: 317 – 26.en_US
dc.identifier.citedreferenceKhong HT, Restifo NP. Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat Immunol 2002; 3: 999 – 1005.en_US
dc.identifier.citedreferenceSarode SC, Sarode GS, Karmarkar S, Tupkari JV. A new classification for potentially malignant disorders of the oral cavity. Oral Oncol 2011; 47: 920 – 1.en_US
dc.identifier.citedreferenceWhite RA, Malkoski SP, Wang XJ. TGFβ signaling in head and neck squamous cell carcinoma. Oncogene 2010; 29: 5437 – 46.en_US
dc.identifier.citedreferenceHuang S, Hendriks W, Althage A, et al. Immune response in mice that lack the interferon‐γ receptor. Science 1993; 259: 1742 – 5.en_US
dc.identifier.citedreferenceYu WG, Ogawa M, Mu J, et al. IL‐12‐induced tumor regression correlates with in situ activity of IFN‐γ produced by tumor‐infiltrating cells and its secondary induction of antitumor pathways. J Leukoc Biol 1997; 62: 450 – 7.en_US
dc.identifier.citedreferenceOgawa M, Yu WG, Umehara K, et al. Multiple roles of interferon‐γ in the mediation of interleukin 12‐induced tumor regression. Cancer Res 1998; 58: 2426 – 32.en_US
dc.identifier.citedreferenceAkbar AN, Vukmanovic‐Stejic M, Taams LS, Macallan DC. The dynamic co‐evolution of memory and regulatory CD4+ T cells in the periphery. Nat Rev Immunol 2007; 7: 231 – 7.en_US
dc.identifier.citedreferenceLippitz BE. Cytokine patterns in patients with cancer: a systematic review. Lancet Oncol 2013; 14: e218 – 28.en_US
dc.identifier.citedreferenceKwon NH, Kim SY, Kim GM. A case of metastatic squamous cell carcinoma arising from actinic cheilitis. Ann Dermatol 2011; 23: 101 – 3.en_US
dc.identifier.citedreferenceCavalcante AS, Anbinder AL, Carvalho YR. Actinic cheilitis: clinical and histological features. J Oral Maxillofac Surg 2008; 66: 498 – 503.en_US
dc.identifier.citedreferenceVieira RA, Minicucci EM, Marques ME, Marques SA. Actinic cheilitis and squamous cell carcinoma of the lip: clinical, histopathological and immunogenetic aspects. An Bras Dermatol 2012; 87: 105 – 14.en_US
dc.identifier.citedreferenceMartínez A, Brethauer U, Rojas IG, et al. Expression of apoptotic and cell proliferation regulatory proteins in actinic cheilitis. J Oral Pathol Med 2005; 34: 257 – 62.en_US
dc.identifier.citedreferenceRojas IG, Martinez A, Pineda A, Spencer ML, Jimenez M, Rudolph MI. Increased mast cell density and protease content in actinic cheilitis. J Oral Pathol Med 2004; 33: 567 – 73.en_US
dc.identifier.citedreferenceShevach EM. Biological functions of regulatory T cells. Adv Immunol 2011; 112: 137 – 76.en_US
dc.identifier.citedreferenceHatam LJ, Devoti JA, Rosenthal DW, et al. Immune suppression in premalignant respiratory papillomas: enriched functional CD4+Foxp3+ regulatory T cells and PD‐1/PD‐L1/L2 expression. Clin Cancer Res 2012; 18: 1925 – 35.en_US
dc.identifier.citedreferenceHiraoka N, Onozato K, Kosuge T, Hirohashi S. Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res 2006; 12: 5423 – 34.en_US
dc.identifier.citedreferenceZamarron BF, Chen W. Dual roles of immune cells and their factors in cancer development and progression. Int J Biol Sci 2011; 7: 651 – 8.en_US
dc.identifier.citedreferenceNishikawa H, Sakaguchi S. Regulatory T cells in tumor immunity. Int J Cancer 2010; 127: 759 – 67.en_US
dc.identifier.citedreferenceCuriel TJ. Regulatory T cells and treatment of cancer. Curr Opin Immunol 2008; 20: 241 – 6.en_US
dc.identifier.citedreferenceRamos RN, Oliveira CE, Gasparoto TH, et al. CD25+ T cell depletion impairs murine squamous cell carcinoma development via modulation of antitumor immune responses. Carcinogenesis 2012; 33: 902 – 9.en_US
dc.identifier.citedreferenceTeng MW, Swann JB, von Scheidt B, et al. Multiple antitumor mechanisms downstream of prophylactic regulatory T‐cell depletion. Cancer Res 2010; 70: 2665 – 74.en_US
dc.identifier.citedreferenceTeng MW, Ngiow SF, von Scheidt B, McLaughlin N, Sparwasser T, Smyth MJ. Conditional regulatory T‐cell depletion releases adaptive immunity preventing carcinogenesis and suppressing established tumor growth. Cancer Res 2010; 70: 7800 – 9.en_US
dc.identifier.citedreferenceValzasina B, Piconese S, Guiducci C, Colombo MP. Tumor‐induced expansion of regulatory T cells by conversion of CD4+CD25− lymphocytes is thymus and proliferation independent. Cancer Res 2006; 66: 4488 – 95.en_US
dc.identifier.citedreferenceChen ML, Pittet MJ, Gorelik L, et al. Regulatory T cells suppress tumor‐specific CD8 T cell cytotoxicity through TGF‐beta signals in vivo. Proc Natl Acad Sci U S A 2005; 102: 419 – 24.en_US
dc.identifier.citedreferenceNakamura K, Kitani A, Strober W. Cell contact‐dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface‐bound transforming growth factor beta. J Exp Med 2001; 194: 629 – 44.en_US
dc.identifier.citedreferenceSotiriou E, Apalla Z, Chovarda E, Panagiotidou D, Ioannides D. Photodynamic therapy with 5‐aminolevulinic acid in actinic cheilitis: an 18‐month clinical and histological follow‐up. J Eur Acad Dermatol Venereol 2010; 24: 916 – 20.en_US
dc.identifier.citedreferenceCampanelli AP, Roselino AM, Cavassani KA, et al. CD4+CD25+ T cells in skin lesions of patients with cutaneous leishmaniasis exhibit phenotypic and functional characteristics of natural regulatory T cells. J Infect Dis 2006; 193: 1313 – 22.en_US
dc.identifier.citedreferenceCosta DL, Guimarães LH, Cardoso TM, et al. Characterization of regulatory T cell (Treg) function in patients infected with Leishmania braziliensis. Hum Immunol 2013; 74: 1491 – 500.en_US
dc.identifier.citedreferenceFontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003; 4: 330 – 6.en_US
dc.identifier.citedreferenceLi MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. Transforming growth factor‐beta regulation of immune responses. Annu Rev Immunol 2006; 24: 99 – 146.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.