CalcDeltaB: An efficient postprocessing tool to calculate ground‐level magnetic perturbations from global magnetosphere simulations
dc.contributor.author | Rastätter, Lutz | en_US |
dc.contributor.author | Tóth, Gábor | en_US |
dc.contributor.author | Kuznetsova, Maria M. | en_US |
dc.contributor.author | Pulkkinen, Antti A. | en_US |
dc.date.accessioned | 2014-11-04T16:35:36Z | |
dc.date.available | WITHHELD_11_MONTHS | en_US |
dc.date.available | 2014-11-04T16:35:36Z | |
dc.date.issued | 2014-09 | en_US |
dc.identifier.citation | Rastätter, Lutz ; Tóth, Gábor ; Kuznetsova, Maria M.; Pulkkinen, Antti A. (2014). "CalcDeltaB: An efficient postprocessing tool to calculate groundâ level magnetic perturbations from global magnetosphere simulations." Space Weather 12(9): 553-565. | en_US |
dc.identifier.issn | 1542-7390 | en_US |
dc.identifier.issn | 1542-7390 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/109314 | |
dc.description.abstract | Ground magnetic field variations can induce electric currents on long conductor systems such as high‐voltage power transmission systems. The extra electric currents can interfere with normal operation of these conductor systems; and thus, there is a great need for better specification and prediction of the field perturbations. In this publication we present CalcDeltaB, an efficient postprocessing tool to calculate magnetic perturbations Δ B at any position on the ground from snapshots of the current systems that are being produced by first‐principle models of the global magnetosphere‐ionosphere system. This tool was developed during the recent “d B /d t ” modeling challenge at the Community Coordinated Modeling Center that compared magnetic perturbations and their derivative with observational results. The calculation tool is separate from each of the magnetosphere models and ensures that the Δ B computation method is uniformly applied, and that validation studies using Δ B compare the performance of the models rather than the combination of each model and a built‐in Δ B computation tool that may exist. Using the tool, magnetic perturbations on the ground are calculated from currents in the magnetosphere, from field‐aligned currents between magnetosphere and ionosphere, and the Hall and Pedersen currents in the ionosphere. The results of the new postprocessing tool are compared with Δ B calculations within the Space Weather Modeling Framework model and are in excellent agreement. We find that a radial resolution of 1/30 R E is fine enough to represent the contribution to Δ B from the region of field‐aligned currents. Key Points Developed tool to compute magnetic perturbations on the ground Too validated using existing SWMF implementation Model validation independent from Delta‐B calculation within each model | en_US |
dc.publisher | Wiley Periodicals, Inc. | en_US |
dc.publisher | United States National Institute of Standards and Technology | en_US |
dc.subject.other | Magnetic Perturbations | en_US |
dc.subject.other | Real‐Time Processing | en_US |
dc.subject.other | Numerical Simulation | en_US |
dc.title | CalcDeltaB: An efficient postprocessing tool to calculate ground‐level magnetic perturbations from global magnetosphere simulations | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Electrical Engineering | en_US |
dc.subject.hlbtoplevel | Engineering | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/109314/1/Contributions_E4_highlat.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/109314/2/AuxiliaryMaterial_README_v2.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/109314/3/Contributions_E1_highlat.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/109314/4/Contributions_E2_highlat.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/109314/5/Contributions_E3_midlat.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/109314/6/Contributions_E2_midlat.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/109314/7/Contributions_E1_midlat.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/109314/8/Contributions_E3_highlat.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/109314/9/Contributions_E5_midlat.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/109314/10/Contributions_E4_midlat.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/109314/11/Contributions_E6_midlat.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/109314/12/swe20180.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/109314/13/Contributions_E6_highlat.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/109314/14/Contributions_E5_highlat.pdf | |
dc.identifier.doi | 10.1002/2014SW001083 | en_US |
dc.identifier.source | Space Weather | en_US |
dc.identifier.citedreference | Abramowitz, M. ( 2010 ), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, United States National Institute of Standards and Technology, Gaithersburg, Maryland. | en_US |
dc.identifier.citedreference | DeZeeuw, D. L., S. Sazykin, R. A. Wolf, T. I. Gombosi, A. J. Ridley, and G. Tóth ( 2004 ), Coupling of a MHD code and an inner magnetospheric model: Initial results, J. Geophys. Res., 109, A12219, doi: 10.1029/2003JA010366. | en_US |
dc.identifier.citedreference | Finlay, C. C., et al. ( 2010 ), International geomagnetic reference field: The eleventh generation, Geophys. J. Int., 183, 1216 – 1230, doi: 10.1111/j.1365‐246X.2010.04804.x. | en_US |
dc.identifier.citedreference | Griffiths, D. J. ( 1950 ), Introduction to Electrodynamics, Mc Graw‐Hill, New York. | en_US |
dc.identifier.citedreference | Lyon, J. G., J. A. Fedder, and C. M. Mobarry ( 2004 ), The Lyon‐Fedder‐Mobarry (LFM) global MHD magnetospheric simulation code, J. Atmos. Sol. Terr. Phys., 66, 1333 – 1350, doi: 10.1016/j.jastp.2004.03.020. | en_US |
dc.identifier.citedreference | Merkin, V. G., and J. G. Lyon ( 2010 ), Effects of the low‐latitude ionospheric boundary condition on the global magnetosphere, J. Geophys. Res., 115, A10202, doi: 10.1029/2010JA015461. | en_US |
dc.identifier.citedreference | Powell, K. G., P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. De Zeeuw ( 1999 ), A solution‐adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys., 154 ( 2 ), 284 – 309, doi: 10.1006/jcph.1999.6299. | en_US |
dc.identifier.citedreference | Pulkkinen, A., et al. ( 2011 ), Geospace environment modeling 2008‐2009 challenge: Ground magnetic field perturbations, Space Weather, 9, S02004, doi: 10.1029/2010SW000600. | en_US |
dc.identifier.citedreference | Pulkkinen, A., et al. ( 2013 ), Community‐wide validation of ground magnetic field perturbation predictions of Geospace models to support model transition to operations, Space Weather, 11, 369 – 385, doi: 10.1002/2013SW000990. | en_US |
dc.identifier.citedreference | Raeder, J., et al. ( 2001 ), Global simulation of the Geospace environment modeling substorm challenge event, J. Geophys. Res., 106 ( A1 ), 381 – 395, doi: 10.1029/2000JA000605. | en_US |
dc.identifier.citedreference | Rastätter, L., et al. ( 2013 ), Geospace environment modeling 2008‐2009 challenge: D s t index, Space Weather, 11, 187 – 205, doi: 10.1002/swe.20036. | en_US |
dc.identifier.citedreference | Ridley, A. J., T. I. Gombosi, and D. L. De Zeeuw ( 2004 ), Ionospheric control of the magnetospheric configuration: Conductance, Ann. Geophys., 22, 567 – 584. | en_US |
dc.identifier.citedreference | Tóth, G., et al. ( 2005 ), Space weather modeling framework: A new tool for the space science community, J. Geophys. Res., 110, A12226, doi: 10.1029/2005JA011126. | en_US |
dc.identifier.citedreference | Tóth, G., et al. ( 2012 ), Adaptive numerical algorithms in space weather modeling, J. Comput. Phys., 231 ( 3 ), 870 – 903, doi: 10.1016/j.jcp.2011.02.006. | en_US |
dc.identifier.citedreference | Tóth, G., X. Meng, T. I. Gombosi, and L. Rastätter ( 2014 ), Predicting the time derivative of local magnetic perturbations, J. Geophys. Res. Space Physics, 119, 310 – 321, doi: 10.1002/2013JA019456. | en_US |
dc.identifier.citedreference | Wiltberger, M., W. Wang, A. G. Burns, S. C. Solomon, J. G. Lyon, and C. C. Goodrich ( 2004 ), Initial results from the coupled magnetosphere ionosphere thermosphere model: Magnetospheric and ionospheric responses, J. Atmos. Sol. Terr. Phys., 66, 1411 – 1423, doi: 10.1016/j.jastp.2004.03.026. | en_US |
dc.identifier.citedreference | Wolf, R. A., R. W. Spiro, and F. J. Rich ( 1991 ), Extension of convection modeling into the high‐latitude ionosphere—Some theoretical difficulties, J. Atmos. Terr. Phys., 53, 817 – 829, doi: 10.1016/0021‐9169(91)90096‐P. | en_US |
dc.identifier.citedreference | Yu, Y., A. Ridley, D. T. Welling, and G. Tóth ( 2010 ), Including gap region field‐aligned currents and magnetospheric currents in the MHD calculation of ground‐based magnetic field perturbations, J. Geophys. Res., 115, A08207, doi: 10.1029/2009JA014869. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.