Show simple item record

CalcDeltaB: An efficient postprocessing tool to calculate ground‐level magnetic perturbations from global magnetosphere simulations

dc.contributor.authorRastätter, Lutzen_US
dc.contributor.authorTóth, Gáboren_US
dc.contributor.authorKuznetsova, Maria M.en_US
dc.contributor.authorPulkkinen, Antti A.en_US
dc.date.accessioned2014-11-04T16:35:36Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2014-11-04T16:35:36Z
dc.date.issued2014-09en_US
dc.identifier.citationRastätter, Lutz ; Tóth, Gábor ; Kuznetsova, Maria M.; Pulkkinen, Antti A. (2014). "CalcDeltaB: An efficient postprocessing tool to calculate groundâ level magnetic perturbations from global magnetosphere simulations." Space Weather 12(9): 553-565.en_US
dc.identifier.issn1542-7390en_US
dc.identifier.issn1542-7390en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/109314
dc.description.abstractGround magnetic field variations can induce electric currents on long conductor systems such as high‐voltage power transmission systems. The extra electric currents can interfere with normal operation of these conductor systems; and thus, there is a great need for better specification and prediction of the field perturbations. In this publication we present CalcDeltaB, an efficient postprocessing tool to calculate magnetic perturbations Δ B at any position on the ground from snapshots of the current systems that are being produced by first‐principle models of the global magnetosphere‐ionosphere system. This tool was developed during the recent “d B /d t ” modeling challenge at the Community Coordinated Modeling Center that compared magnetic perturbations and their derivative with observational results. The calculation tool is separate from each of the magnetosphere models and ensures that the Δ B computation method is uniformly applied, and that validation studies using Δ B compare the performance of the models rather than the combination of each model and a built‐in Δ B computation tool that may exist. Using the tool, magnetic perturbations on the ground are calculated from currents in the magnetosphere, from field‐aligned currents between magnetosphere and ionosphere, and the Hall and Pedersen currents in the ionosphere. The results of the new postprocessing tool are compared with Δ B calculations within the Space Weather Modeling Framework model and are in excellent agreement. We find that a radial resolution of 1/30 R E is fine enough to represent the contribution to Δ B from the region of field‐aligned currents. Key Points Developed tool to compute magnetic perturbations on the ground Too validated using existing SWMF implementation Model validation independent from Delta‐B calculation within each modelen_US
dc.publisherWiley Periodicals, Inc.en_US
dc.publisherUnited States National Institute of Standards and Technologyen_US
dc.subject.otherMagnetic Perturbationsen_US
dc.subject.otherReal‐Time Processingen_US
dc.subject.otherNumerical Simulationen_US
dc.titleCalcDeltaB: An efficient postprocessing tool to calculate ground‐level magnetic perturbations from global magnetosphere simulationsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelElectrical Engineeringen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109314/1/Contributions_E4_highlat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109314/2/AuxiliaryMaterial_README_v2.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109314/3/Contributions_E1_highlat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109314/4/Contributions_E2_highlat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109314/5/Contributions_E3_midlat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109314/6/Contributions_E2_midlat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109314/7/Contributions_E1_midlat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109314/8/Contributions_E3_highlat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109314/9/Contributions_E5_midlat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109314/10/Contributions_E4_midlat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109314/11/Contributions_E6_midlat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109314/12/swe20180.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109314/13/Contributions_E6_highlat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109314/14/Contributions_E5_highlat.pdf
dc.identifier.doi10.1002/2014SW001083en_US
dc.identifier.sourceSpace Weatheren_US
dc.identifier.citedreferenceAbramowitz, M. ( 2010 ), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, United States National Institute of Standards and Technology, Gaithersburg, Maryland.en_US
dc.identifier.citedreferenceDeZeeuw, D. L., S. Sazykin, R. A. Wolf, T. I. Gombosi, A. J. Ridley, and G. Tóth ( 2004 ), Coupling of a MHD code and an inner magnetospheric model: Initial results, J. Geophys. Res., 109, A12219, doi: 10.1029/2003JA010366.en_US
dc.identifier.citedreferenceFinlay, C. C., et al. ( 2010 ), International geomagnetic reference field: The eleventh generation, Geophys. J. Int., 183, 1216 – 1230, doi: 10.1111/j.1365‐246X.2010.04804.x.en_US
dc.identifier.citedreferenceGriffiths, D. J. ( 1950 ), Introduction to Electrodynamics, Mc Graw‐Hill, New York.en_US
dc.identifier.citedreferenceLyon, J. G., J. A. Fedder, and C. M. Mobarry ( 2004 ), The Lyon‐Fedder‐Mobarry (LFM) global MHD magnetospheric simulation code, J. Atmos. Sol. Terr. Phys., 66, 1333 – 1350, doi: 10.1016/j.jastp.2004.03.020.en_US
dc.identifier.citedreferenceMerkin, V. G., and J. G. Lyon ( 2010 ), Effects of the low‐latitude ionospheric boundary condition on the global magnetosphere, J. Geophys. Res., 115, A10202, doi: 10.1029/2010JA015461.en_US
dc.identifier.citedreferencePowell, K. G., P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. De Zeeuw ( 1999 ), A solution‐adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys., 154 ( 2 ), 284 – 309, doi: 10.1006/jcph.1999.6299.en_US
dc.identifier.citedreferencePulkkinen, A., et al. ( 2011 ), Geospace environment modeling 2008‐2009 challenge: Ground magnetic field perturbations, Space Weather, 9, S02004, doi: 10.1029/2010SW000600.en_US
dc.identifier.citedreferencePulkkinen, A., et al. ( 2013 ), Community‐wide validation of ground magnetic field perturbation predictions of Geospace models to support model transition to operations, Space Weather, 11, 369 – 385, doi: 10.1002/2013SW000990.en_US
dc.identifier.citedreferenceRaeder, J., et al. ( 2001 ), Global simulation of the Geospace environment modeling substorm challenge event, J. Geophys. Res., 106 ( A1 ), 381 – 395, doi: 10.1029/2000JA000605.en_US
dc.identifier.citedreferenceRastätter, L., et al. ( 2013 ), Geospace environment modeling 2008‐2009 challenge: D s t index, Space Weather, 11, 187 – 205, doi: 10.1002/swe.20036.en_US
dc.identifier.citedreferenceRidley, A. J., T. I. Gombosi, and D. L. De Zeeuw ( 2004 ), Ionospheric control of the magnetospheric configuration: Conductance, Ann. Geophys., 22, 567 – 584.en_US
dc.identifier.citedreferenceTóth, G., et al. ( 2005 ), Space weather modeling framework: A new tool for the space science community, J. Geophys. Res., 110, A12226, doi: 10.1029/2005JA011126.en_US
dc.identifier.citedreferenceTóth, G., et al. ( 2012 ), Adaptive numerical algorithms in space weather modeling, J. Comput. Phys., 231 ( 3 ), 870 – 903, doi: 10.1016/j.jcp.2011.02.006.en_US
dc.identifier.citedreferenceTóth, G., X. Meng, T. I. Gombosi, and L. Rastätter ( 2014 ), Predicting the time derivative of local magnetic perturbations, J. Geophys. Res. Space Physics, 119, 310 – 321, doi: 10.1002/2013JA019456.en_US
dc.identifier.citedreferenceWiltberger, M., W. Wang, A. G. Burns, S. C. Solomon, J. G. Lyon, and C. C. Goodrich ( 2004 ), Initial results from the coupled magnetosphere ionosphere thermosphere model: Magnetospheric and ionospheric responses, J. Atmos. Sol. Terr. Phys., 66, 1411 – 1423, doi: 10.1016/j.jastp.2004.03.026.en_US
dc.identifier.citedreferenceWolf, R. A., R. W. Spiro, and F. J. Rich ( 1991 ), Extension of convection modeling into the high‐latitude ionosphere—Some theoretical difficulties, J. Atmos. Terr. Phys., 53, 817 – 829, doi: 10.1016/0021‐9169(91)90096‐P.en_US
dc.identifier.citedreferenceYu, Y., A. Ridley, D. T. Welling, and G. Tóth ( 2010 ), Including gap region field‐aligned currents and magnetospheric currents in the MHD calculation of ground‐based magnetic field perturbations, J. Geophys. Res., 115, A08207, doi: 10.1029/2009JA014869.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.