Show simple item record

Solution NMR studies reveal no global flexibility in the catalytic domain of CDC25B

dc.contributor.authorLund, Georgeen_US
dc.contributor.authorCierpicki, Tomaszen_US
dc.date.accessioned2014-11-04T16:35:37Z
dc.date.availableWITHHELD_13_MONTHSen_US
dc.date.available2014-11-04T16:35:37Z
dc.date.issued2014-11en_US
dc.identifier.citationLund, George; Cierpicki, Tomasz (2014). "Solution NMR studies reveal no global flexibility in the catalytic domain of CDC25B." Proteins: Structure, Function, and Bioinformatics 82(11): 2889-2895.en_US
dc.identifier.issn0887-3585en_US
dc.identifier.issn1097-0134en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/109315
dc.description.abstractThe CDC25B phosphatase is a critical regulator of the cell cycle and has been validated as an important therapeutic target in cancer. Previous studies using molecular dynamics simulations have concluded that the catalytic domain of CDC25B may experience a significant degree of dynamics or be partially disordered in solution, a finding that has a pronounced impact on the structure‐based development of CDC25B inhibitors. We have probed the backbone dynamics of the CDC25B catalytic domain in solution using NMR relaxation experiments and found that the core of the protein is relatively rigid and does not experience any large‐scale dynamics over a broad range of time scales. Furthermore, based on residual dipolar coupling measurements we have concluded that the conformation in solution is very similar to that observed in the crystal form. Importantly, these findings rationalize the application of the CDC25B crystal structure in structure‐based drug development. Proteins 2014; 82:2889–2895. © 2014 Wiley Periodicals, Inc.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherModel‐Free Analysisen_US
dc.subject.otherProtein Dynamicsen_US
dc.subject.otherProtein Structureen_US
dc.subject.otherRDCen_US
dc.subject.otherCDC25Ben_US
dc.subject.otherNMR Dynamicsen_US
dc.titleSolution NMR studies reveal no global flexibility in the catalytic domain of CDC25Ben_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109315/1/prot24581-sup-0001-suppinfo01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109315/2/prot24581.pdf
dc.identifier.doi10.1002/prot.24581en_US
dc.identifier.sourceProteins: Structure, Function, and Bioinformaticsen_US
dc.identifier.citedreferenceMandel AM, Akke M, Palmer AG. Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme. J Mol Biol 1995; 246: 144 – 163.en_US
dc.identifier.citedreferenceLavecchia A, Di Giovanni C, Novellino E. Inhibitors of Cdc25 phosphatases as anticancer agents: a patent review. Expert Opin Ther Pat 2010; 20: 405 – 425.en_US
dc.identifier.citedreferenceLavecchia A, Di Giovanni C, Novellino E. CDC25 Phosphatase inhibitors: an update. Mini Rev Med Chem 2012; 12: 62 – 73.en_US
dc.identifier.citedreferenceSchleucher J, Schwendinger M, Sattler M, Schmidt P, Schedletzky O, Glaser SJ, Sørensen OW, Griesinger C. A general enhancement scheme in heteronuclear multidimensional NMR employing pulsed field gradients. J Biomol NMR 1994; 4: 301 – 306.en_US
dc.identifier.citedreferenceKay LE, Xu GY, Yamazaki T. Enhanced‐sensitivity triple‐resonance spectroscopy with minimal H 2 O saturation. J Magn Reson Ser A 1994; 109: 129 – 133.en_US
dc.identifier.citedreferenceMuhandiram DR, Kay LE. Gradient‐enhanced triple‐resonance three‐dimensional NMR experiments with improved sensitivity. J Magn Reson Ser B 1994; 103: 203 – 216.en_US
dc.identifier.citedreferenceDelaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 1995; 6: 277 – 293.en_US
dc.identifier.citedreferenceGoddard TG, Kneller DG. SPARKY 3, University of California, San Francisco.en_US
dc.identifier.citedreferenceBarbato G, Ikura M, Kay LE, Pastor RW, Bax A. Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two‐dimensional NMR spectroscopy: the central helix is flexible. Biochemistry 1992; 31: 5269 – 5278.en_US
dc.identifier.citedreferenceTollinger M, Skrynnikov NR, Mulder FA, Forman‐Kay JD, Kay LE. Slow dynamics in folded and unfolded states of an SH3 domain. J Am Chem Soc 2001; 123: 11341 – 11352.en_US
dc.identifier.citedreferenceBieri M, Gooley PR. Automated NMR relaxation dispersion data analysis using NESSY. BMC Bioinformatics 2011; 12: 421.en_US
dc.identifier.citedreferencePalmer AG. Modelfree 4.2. 2006. Accessed July 29, 2013. Available at: http://cpmcnet.columbia.edu/dept/gsas/biochem/labs/palmer/software.html.en_US
dc.identifier.citedreferenceCole R, Loria JP. FAST‐Modelfree: a program for rapid automated analysis of solution NMR spin‐relaxation data. J Biomol NMR 2003:26; 203 – 213.en_US
dc.identifier.citedreferencePalmer AG. pdbinertia. Version 4.2, 2006. Accessed July 29, 2013. Available at: http://www.palmer.hs.columbia.edu/software/diffusion.html.en_US
dc.identifier.citedreferencePalmer AG. r2r1_diffusion. Version 4.2, 2006. Accessed July 29, 2013. Available at: http://www.palmer.hs.columbia.edu/software/diffusion.html.en_US
dc.identifier.citedreferenceNilsson I, Hoffmann I. Cell cycle regulation by the Cdc25 phosphatase family. Prog Cell Cycle Res 2000; 4: 107 – 114.en_US
dc.identifier.citedreferenceCierpicki T, Bushweller JH. Charged gels as orienting media for measurement of residual dipolar couplings in soluble and integral membrane proteins. J Am Chem Soc 2004; 126: 16259 – 16266.en_US
dc.identifier.citedreferenceOttiger M, Delaglio F, Bax A. Measurement of J and dipolar couplings from simplified two‐dimensional NMR spectra. J Magn Reson 1998; 131: 373 – 378.en_US
dc.identifier.citedreferenceSohn J, Parks J, Buhrman G. Experimental validation of the docking orientation of Cdc25 with its Cdk2‐CycA protein substrate. Biochemistry 2005; 44: 16563 – 16573.en_US
dc.identifier.citedreferenceSohn J, Buhrman G, Rudolph J. Kinetic and structural studies of specific protein‐protein interactions in substrate catalysis by Cdc25B phosphatase. Biochemistry 2007; 46: 807 – 818.en_US
dc.identifier.citedreferenceLipari G, Szabo A. Model‐free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. I. Theory and range of validity. J Am Chem Soc 1982; 104: 4546 – 4559.en_US
dc.identifier.citedreferenceBax A. Weak alignment offers new NMR opportunities to study protein structure and dynamics. Protein Sci 2003; 12: 1 – 16.en_US
dc.identifier.citedreferencePrestegard JH, al‐Hashimi HM, Tolman JR. NMR structures of biomolecules using field oriented media and residual dipolar couplings. Q Rev Biophys 2000; 33: 371 – 424.en_US
dc.identifier.citedreferenceShen Y, Delaglio F, Cornilescu G, Bax A. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 2009; 44: 213 – 223.en_US
dc.identifier.citedreferenceBoutros R, Lobjois V, Ducommun B. CDC25 Phosphatases in cancer cells: key players? Good targets? Nat Rev Cancer 2007; 7: 495 – 507.en_US
dc.identifier.citedreferenceKristjánsdóttir K, Rudolph J. Cdc25 Phosphatases and cancer. Chem Biol 2004; 11: 1043 – 1051.en_US
dc.identifier.citedreferenceTakemasa I, Yamamoto H, Sekimoto M, Ohue M, Noura S, Miyake Y, Matsumoto T, Aihara T, Tomita N, Tamaki Y, Sakita I, Kikkawa N, Matsuura N, Shiozaki H, Monden M. Overexpression of CDC25B phosphatase as a novel marker of poor prognosis of human colorectal carcinoma. Cancer Res 2000; 60: 3043 – 3050.en_US
dc.identifier.citedreferenceIto Y, Yoshida H, Tomoda C, Uruno T, Takamura Y, Miya A, Kobayashi K, Matsuzuka F, Kuma K, Nakamura Y, Kakudo K, Miyauchi A. Expression of cdc25B and cdc25A in medullary thyroid carcinoma: cdc25B expression level predicts a poor prognosis. Cancer Lett 2005; 229: 291 – 297.en_US
dc.identifier.citedreferenceMamonov AB, Bhatt D, Cashman DJ, Ding Y, Zuckerman DM. General library‐based Monte Carlo technique enables equilibrium sampling of semi‐atomistic protein models. J Phys Chem B 2009; 113: 10891 – 10904.en_US
dc.identifier.citedreferenceArantes GM. Flexibility and inhibitor binding in cdc25 phosphatases. Proteins 2010; 78: 3017 – 3032.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.