Show simple item record

Hyperglycemia‐ and neuropathy‐induced changes in mitochondria within sensory nerves

dc.contributor.authorHamid, Hussein S.en_US
dc.contributor.authorMervak, Colin M.en_US
dc.contributor.authorMünch, Alexandra E.en_US
dc.contributor.authorRobell, Nicholas J.en_US
dc.contributor.authorHayes, John M.en_US
dc.contributor.authorPorzio, Michael T.en_US
dc.contributor.authorSingleton, J. Robinsonen_US
dc.contributor.authorSmith, A. Gordonen_US
dc.contributor.authorFeldman, Eva L.en_US
dc.contributor.authorLentz, Stephen I.en_US
dc.date.accessioned2014-11-04T16:35:42Z
dc.date.availableWITHHELD_12_MONTHSen_US
dc.date.available2014-11-04T16:35:42Z
dc.date.issued2014-10en_US
dc.identifier.citationHamid, Hussein S.; Mervak, Colin M.; Münch, Alexandra E. ; Robell, Nicholas J.; Hayes, John M.; Porzio, Michael T.; Singleton, J. Robinson; Smith, A. Gordon; Feldman, Eva L.; Lentz, Stephen I. (2014). "Hyperglycemiaâ and neuropathyâ induced changes in mitochondria within sensory nerves." Annals of Clinical and Translational Neurology 1(10): 799-812.en_US
dc.identifier.issn2328-9503en_US
dc.identifier.issn2328-9503en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/109326
dc.description.abstractObjective This study focused on altered mitochondrial dynamics as a potential mechanism for diabetic peripheral neuropathy ( DPN ). We employed both an in vitro sensory neuron model and an in situ analysis of human intraepidermal nerve fibers ( IENF s) from cutaneous biopsies to measure alterations in the size distribution of mitochondria as a result of hyperglycemia and diabetes, respectively. Methods Neurite‐ and nerve‐specific mitochondrial signals within cultured rodent sensory neurons and human IENF s were measured by employing a three‐dimensional visualization and quantification technique. Skin biopsies from distal thigh (DT) and distal leg (DL) were analyzed from three groups of patients; patients with diabetes and no DPN , patients with diabetes and confirmed DPN , and healthy controls. Results This analysis demonstrated an increase in mitochondria distributed within the neurites of cultured sensory neurons exposed to hyperglycemic conditions. Similar changes were observed within IENF s of the DT in DPN patients compared to controls. This change was represented by a significant shift in the size frequency distribution of mitochondria toward larger mitochondria volumes within DT nerves of DPN patients. There was a length‐dependent difference in mitochondria within IENF s. Distal leg IENF s from control patients had a significant shift toward larger volumes of mitochondrial signal compared to DT IENF s. Interpretation The results of this study support the hypothesis that altered mitochondrial dynamics may contribute to DPN pathogenesis. Future studies will examine the potential mechanisms that are responsible for mitochondrial changes within IENF s and its effect on DPN pathogenesis.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.titleHyperglycemia‐ and neuropathy‐induced changes in mitochondria within sensory nervesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelNeurology and Neurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109326/1/acn3119.pdf
dc.identifier.doi10.1002/acn3.119en_US
dc.identifier.sourceAnnals of Clinical and Translational Neurologyen_US
dc.identifier.citedreferenceSchroder JM, Sommer C. Mitochondrial abnormalities in human sural nerves: fine structural evaluation of cases with mitochondrial myopathy, hereditary and non‐hereditary neuropathies, and review of the literature. Acta Neuropathol 1991; 82: 471 – 482.en_US
dc.identifier.citedreferenceFogarty MJ, Hammond LA, Kanjhan R, et al. A method for the three‐dimensional reconstruction of Neurobiotin‐filled neurons and the location of their synaptic inputs. Front Neural Circuits 2013; 7: 1 – 18.en_US
dc.identifier.citedreferenceCasanova‐Molla J, Morales M, Garrabou G, et al. Mitochondrial loss indicates early axonal damage in small fiber neuropathies. J Peripher Nerv Syst 2012; 17: 147 – 157.en_US
dc.identifier.citedreferenceCourchesne SL, Karch C, Pazyra‐Murphy MF, Segal RA. Sensory neuropathy attributable to loss of Bcl‐w. J Neurosci 2011; 31: 1624 – 1634.en_US
dc.identifier.citedreferenceVial JD. The early changes in the axoplasm during wallerian degeneration. J Biophys Biochem Cytol 1958; 4: 551 – 555.en_US
dc.identifier.citedreferenceMizisin AP, Nelson RW, Sturges BK, et al. Comparable myelinated nerve pathology in feline and human diabetes mellitus. Acta Neuropathol 2007; 113: 431 – 442.en_US
dc.identifier.citedreferencePark JY, Jang SY, Shin YK, et al. Mitochondrial swelling and microtubule depolymerization are associated with energy depletion in axon degeneration. Neuroscience 2013; 238: 258 – 269.en_US
dc.identifier.citedreferenceCheng HT, Dauch JR, Porzio MT, et al. Increased axonal regeneration and swellings in intraepidermal nerve fibers characterize painful phenotypes of diabetic neuropathy. J Pain 2013; 14: 941 – 947.en_US
dc.identifier.citedreferenceCourt FA, Coleman MP. Mitochondria as a central sensor for axonal degenerative stimuli. Trends Neurosci 2012; 35: 364 – 372.en_US
dc.identifier.citedreferenceMisgeld T, Kerschensteiner M, Bareyre FM, et al. Imaging axonal transport of mitochondria in vivo. Nat Methods 2007; 4: 559 – 561.en_US
dc.identifier.citedreferenceReynolds IJ, Malaiyandi LM, Coash M, Rintoul GL. Mitochondrial trafficking in neurons: a key variable in neurodegeneration? J Bioenerg Biomembr 2004; 36: 283 – 286.en_US
dc.identifier.citedreferenceVan Laar VS, Berman SB. Mitochondrial dynamics in Parkinson's disease. Exp Neurol 2009; 218: 247 – 256.en_US
dc.identifier.citedreferenceRui Y, Tiwari P, Xie Z, Zheng JQ. Acute impairment of mitochondrial trafficking by beta‐amyloid peptides in hippocampal neurons. J Neurosci 2006; 26: 10480 – 10487.en_US
dc.identifier.citedreferenceLi XJ, Orr AL, Li S. Impaired mitochondrial trafficking in Huntington's disease. Biochim Biophys Acta 2010; 1802: 62 – 65.en_US
dc.identifier.citedreferenceDe Vos KJ, Grierson AJ, Ackerley S, Miller CC. Role of axonal transport in neurodegenerative diseases. Annu Rev Neurosci 2008; 31: 151 – 173.en_US
dc.identifier.citedreferenceChen H, Chan DC. Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases. Hum Mol Genet 2009; 18: R169 – R176.en_US
dc.identifier.citedreferenceBlackstone C, O'Kane CJ, Reid E. Hereditary spastic paraplegias: membrane traffic and the motor pathway. Nat Rev Neurosci 2011; 12: 31 – 42.en_US
dc.identifier.citedreferenceCai Q, Sheng ZH. Mitochondrial transport and docking in axons. Exp Neurol 2009; 218: 257 – 267.en_US
dc.identifier.citedreferenceOhno N, Kidd G, Mahad D, et al. Myelination and axonal electrical activity modulate the distribution and motility of mitochondria at CNS nodes of ranvier. J Neurosci 2011; 31: 7249 – 7258.en_US
dc.identifier.citedreferenceHollenbeck PJ, Saxton WM. The axonal transport of mitochondria. J Cell Sci 2005; 118: 5411 – 5419.en_US
dc.identifier.citedreferenceKang JS, Tian JH, Pan PY, et al. Docking of axonal mitochondria by syntaphilin controls their mobility and affects short‐term facilitation. Cell 2008; 132: 137 – 148.en_US
dc.identifier.citedreferenceEdwards JL, Vincent AM, Cheng HT, Feldman EL. Diabetic neuropathy: mechanisms to management. Pharmacol Ther 2008; 120: 1 – 34.en_US
dc.identifier.citedreferenceVincent AM, McLean LL, Backus C, Feldman EL. Short‐term hyperglycemia produces oxidative damage and apoptosis in neurons. FASEB J 2005; 19: 638 – 640.en_US
dc.identifier.citedreferenceLittle AA, Edwards JL, Feldman EL. Diabetic neuropathies. Pract Neurol 2007; 7: 82 – 92.en_US
dc.identifier.citedreferencePeriquet MI, Novak V, Collins MP, et al. Painful sensory neuropathy: prospective evaluation using skin biopsy. Neurology 1999; 53: 1641 – 1647.en_US
dc.identifier.citedreferenceLauria G, Lombardi R. Skin biopsy: a new tool for diagnosing peripheral neuropathy. BMJ 2007; 334: 1159 – 1162.en_US
dc.identifier.citedreferenceHolland NR, Crawford TO, Hauer P, et al. Small‐fiber sensory neuropathies: clinical course and neuropathology of idiopathic cases. Ann Neurol 1998; 44: 47 – 59.en_US
dc.identifier.citedreferencePardo CA, McArthur JC, Griffin JW. HIV neuropathy: insights in the pathology of HIV peripheral nerve disease. J Peripher Nerv Syst 2001; 6: 21 – 27.en_US
dc.identifier.citedreferenceSmith AG, Howard JR, Kroll R, et al. The reliability of skin biopsy with measurement of intraepidermal nerve fiber density. J Neurol Sci 2005; 228: 65 – 69.en_US
dc.identifier.citedreferenceMcCarthy BG, Hsieh ST, Stocks A, et al. Cutaneous innervation in sensory neuropathies: evaluation by skin biopsy. Neurology 1995; 45: 1848 – 1855.en_US
dc.identifier.citedreferenceLauria G, Cornblath DR, Johansson O, et al. EFNS guidelines on the use of skin biopsy in the diagnosis of peripheral neuropathy. Eur J Neurol 2005; 12: 747 – 758.en_US
dc.identifier.citedreferenceLauria G, Hsieh ST, Johansson O, et al. European Federation of Neurological Societies/Peripheral Nerve Society Guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society. Eur J Neurol 2010; 17: 903 – 912, e44–e49.en_US
dc.identifier.citedreferenceSmith AG, Ramachandran P, Tripp S, Singleton JR. Epidermal nerve innervation in impaired glucose tolerance and diabetes‐associated neuropathy. Neurology 2001; 57: 1701 – 1704.en_US
dc.identifier.citedreferenceSumner CJ, Sheth S, Griffin JW, et al. The spectrum of neuropathy in diabetes and impaired glucose tolerance. Neurology 2003; 60: 108 – 111.en_US
dc.identifier.citedreferenceKennedy WR, Wendelschafer‐Crabb G, Johnson T. Quantitation of epidermal nerves in diabetic neuropathy. Neurology 1996; 47: 1042 – 1048.en_US
dc.identifier.citedreferencePolydefkis M, Hauer P, Sheth S, et al. The time course of epidermal nerve fibre regeneration: studies in normal controls and in people with diabetes, with and without neuropathy. Brain 2004; 127: 1606 – 1615.en_US
dc.identifier.citedreferenceSullivan KA, Hayes JM, Wiggin TD, et al. Mouse models of diabetic neuropathy. Neurobiol Dis 2007; 28: 276 – 285.en_US
dc.identifier.citedreferenceSullivan KA, Lentz SI, Roberts JL Jr, Feldman EL. Criteria for creating and assessing mouse models of diabetic neuropathy. Curr Drug Targets 2008; 9: 3 – 13.en_US
dc.identifier.citedreferenceLauria G, Lombardi R, Borgna M, et al. Intraepidermal nerve fiber density in rat foot pad: neuropathologic‐neurophysiologic correlation. J Peripher Nerv Syst 2005; 10: 202 – 208.en_US
dc.identifier.citedreferenceSmith AG, Russell J, Feldman EL, et al. Lifestyle intervention for pre‐diabetic neuropathy. Diabetes Care 2006; 29: 1294 – 1299.en_US
dc.identifier.citedreferenceSheng ZH, Cai Q. Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat Rev Neurosci 2012; 13: 77 – 93.en_US
dc.identifier.citedreferenceSchon EA, Przedborski S. Mitochondria: the next (neurode)generation. Neuron 2011; 70: 1033 – 1053.en_US
dc.identifier.citedreferencePetrozzi L, Ricci G, Giglioli NJ, et al. Mitochondria and neurodegeneration. Biosci Rep 2007; 27: 87 – 104.en_US
dc.identifier.citedreferenceMaresca A, la Morgia C, Caporali L, et al. The optic nerve: a “mito‐window” on mitochondrial neurodegeneration. Mol Cell Neurosci 2013; 55: 62 – 76.en_US
dc.identifier.citedreferenceSu B, Wang X, Zheng L, et al. Abnormal mitochondrial dynamics and neurodegenerative diseases. Biochim Biophys Acta 2010; 1802: 135 – 142.en_US
dc.identifier.citedreferenceBaloh RH. Mitochondrial dynamics and peripheral neuropathy. Neuroscientist 2008; 14: 12 – 18.en_US
dc.identifier.citedreferenceMelli G, Taiana M, Camozzi F, et al. Alpha‐lipoic acid prevents mitochondrial damage and neurotoxicity in experimental chemotherapy neuropathy. Exp Neurol 2008; 214: 276 – 284.en_US
dc.identifier.citedreferenceStaff NP, Podratz JL, Grassner L, et al. Bortezomib alters microtubule polymerization and axonal transport in rat dorsal root ganglion neurons. Neurotoxicology 2013; 39C: 124 – 131.en_US
dc.identifier.citedreferenceChowdhury SK, Smith DR, Fernyhough P. The role of aberrant mitochondrial bioenergetics in diabetic neuropathy. Neurobiol Dis 2013; 51: 56 – 65.en_US
dc.identifier.citedreferenceZheng H, Xiao WH, Bennett GJ. Functional deficits in peripheral nerve mitochondria in rats with paclitaxel‐ and oxaliplatin‐evoked painful peripheral neuropathy. Exp Neurol 2011; 232: 154 – 161.en_US
dc.identifier.citedreferenceVincent AM, Edwards JL, McLean LL, et al. Mitochondrial biogenesis and fission in axons in cell culture and animal models of diabetic neuropathy. Acta Neuropathol 2010; 120: 477 – 489.en_US
dc.identifier.citedreferenceLeinninger GM, Edwards JL, Lipshaw MJ, Feldman EL. Mechanisms of disease: mitochondria as new therapeutic targets in diabetic neuropathy. Nat Clin Pract Neurol 2006; 2: 620 – 628.en_US
dc.identifier.citedreferenceLeinninger GM, Backus C, Sastry AM, et al. Mitochondria in DRG neurons undergo hyperglycemic mediated injury through Bim, Bax and the fission protein Drp1. Neurobiol Dis 2006; 23: 11 – 22.en_US
dc.identifier.citedreferenceEdwards JL, Quattrini A, Lentz SI, et al. Diabetes regulates mitochondrial biogenesis and fission in mouse neurons. Diabetologia 2010; 53: 160 – 169.en_US
dc.identifier.citedreferenceFernyhough P, Roy Chowdhury SK, Schmidt RE. Mitochondrial stress and the pathogenesis of diabetic neuropathy. Expert Rev Endocrinol Metab 2010; 5: 39 – 49.en_US
dc.identifier.citedreferenceSchmidt RE, Green KG, Snipes LL, Feng D. Neuritic dystrophy and neuronopathy in Akita (Ins2(Akita)) diabetic mouse sympathetic ganglia. Exp Neurol 2009; 216: 207 – 218.en_US
dc.identifier.citedreferenceLeinninger GM, Backus C, Uhler MD, et al. Phosphatidylinositol 3‐kinase and Akt effectors mediate insulin‐like growth factor‐I neuroprotection in dorsal root ganglia neurons. FASEB J 2004; 18: 1544 – 1546.en_US
dc.identifier.citedreferenceRussell JW, Golovoy D, Vincent AM, et al. High glucose‐induced oxidative stress and mitochondrial dysfunction in neurons. FASEB J 2002; 16: 1738 – 1748.en_US
dc.identifier.citedreferenceBakkers M, Merkies IS, Lauria G, et al. Intraepidermal nerve fiber density and its application in sarcoidosis. Neurology 2009; 73: 1142 – 1148.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.