Show simple item record

A multidecadal simulation of Atlantic tropical cyclones using a variable‐resolution global atmospheric general circulation model

dc.contributor.authorZarzycki, Colin M.en_US
dc.contributor.authorJablonowski, Christianeen_US
dc.date.accessioned2014-11-04T16:35:44Z
dc.date.availableWITHHELD_11_MONTHSen_US
dc.date.available2014-11-04T16:35:44Z
dc.date.issued2014-09en_US
dc.identifier.citationZarzycki, Colin M.; Jablonowski, Christiane (2014). "A multidecadal simulation of Atlantic tropical cyclones using a variable‐resolution global atmospheric general circulation model." Journal of Advances in Modeling Earth Systems 6(3): 805-828.en_US
dc.identifier.issn1942-2466en_US
dc.identifier.issn1942-2466en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/109331
dc.description.abstractUsing a variable‐resolution option within the National Center for Atmospheric Research/Department of Energy Community Atmosphere Model (CAM) Spectral Element (SE) global model, a refined nest at 0.25° (∼28 km) horizontal resolution located over the North Atlantic is embedded within a global 1° (∼111 km) grid. The grid is designed such that fine grid cells are located where tropical cyclones (TCs) are observed to occur during the Atlantic TC season (June–November). Two simulations are compared, one with refinement and one control case with no refinement (globally uniform 1° grid). Both simulations are integrated for 23 years using Atmospheric Model Intercomparison Protocols. TCs are tracked using an objective detection algorithm. The variable‐resolution simulation produces significantly more TCs than the unrefined simulation. Storms that do form in the refined nest are much more intense, with multiple storms strengthening to Saffir‐Simpson category 3 intensity or higher. Both count and spatial distribution of TC genesis and tracks in the variable‐resolution simulation are well matched to observations and represent significant improvements over the unrefined simulation. Some degree of interannual skill is noted, with the variable‐resolution grid able to reproduce the observed connection between Atlantic TCs and the El Niño‐Southern Oscillation (ENSO). It is shown that Genesis Potential Index (GPI) is well matched between the refined and unrefined simulations, implying that the introduction of variable‐resolution does not affect the synoptic environment. Potential “upscale” effects are noted in the variable‐resolution simulation, suggesting stronger TCs in refined nests may play a role in meridional transport of momentum, heat, and moisture. Key Points Variable‐resolution models can improve the representation of tropical cyclones CAM produces realistic Atlantic TC climatology at 0.25° resolution Addition of local refinement in CAM does not impact synoptic scalesen_US
dc.publisherSpringeren_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherVariable‐Resolutionen_US
dc.subject.otherHurricanesen_US
dc.subject.otherGeneral Circulation Modelsen_US
dc.subject.otherTropical Cyclonesen_US
dc.titleA multidecadal simulation of Atlantic tropical cyclones using a variable‐resolution global atmospheric general circulation modelen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelGeological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109331/1/jame20104.pdf
dc.identifier.doi10.1002/2014MS000352en_US
dc.identifier.sourceJournal of Advances in Modeling Earth Systemsen_US
dc.identifier.citedreferenceSatoh, M., et al. ( 2012 ), The intra‐seasonal oscillation and its control of tropical cyclones simulated by high‐resolution global atmospheric models, Clim. Dyn., 39 ( 9–10 ), 2185 – 2206, doi: 10.1007/s00382‐011‐1235‐6.en_US
dc.identifier.citedreferenceRingler, T., L. Ju, and M. Gunzburger ( 2008 ), A multiresolution method for climate system modeling: Application of spherical centroidal Voronoi tessellations, Ocean Dyn., 58, 475 – 498.en_US
dc.identifier.citedreferenceSimpson, R. H. ( 1974 ), The hurricane disaster—Potential scale, Weatherwise, 27 ( 4 ), 169 – 186, doi: 10.1080/00431672.1974.9931702.en_US
dc.identifier.citedreferenceSkamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.‐H. Park, and T. D. Ringler ( 2012 ), A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C‐grid staggering, Mon. Weather Rev., 140 ( 9 ), 3090 – 3105, doi: 10.1175/MWR‐D‐11‐00215.1.en_US
dc.identifier.citedreferenceStrachan, J., P. L. Vidale, K. Hodges, M. Roberts, and M.‐E. Demory ( 2013 ), Investigating global tropical cyclone activity with a hierarchy of AGCMs: The role of model resolution, J. Clim., 26 ( 1 ), 133 – 152, doi: 10.1175/JCLI‐D‐12‐00012.1.en_US
dc.identifier.citedreferenceStrazzo, S., J. B. Elsner, T. LaRow, D. J. Halperin, and M. Zhao ( 2013 ), Observed versus GCM‐generated local tropical cyclone frequency: Comparisons using a spatial lattice, J. Clim., 26 ( 21 ), 8257 – 8268, doi: 10.1175/JCLI‐D‐12‐00808.1.en_US
dc.identifier.citedreferenceTaylor, M., J. Tribbia, and M. Iskandarani ( 1997 ), The spectral element method for the shallow water equations on the sphere, J. Comput. Phys., 130, 92 – 108.en_US
dc.identifier.citedreferenceTaylor, M. A. ( 2011 ), Conservation of mass and energy for the moist atmospheric primitive equations on unstructured grids, in Numerical Techniques for Global Atmospheric Models, Lecture Notes in Computational Science and Engineering, vol. 80, edited by P. H. Lauritzen et al., pp. 357 – 380, Springer, Berlin, Germany.en_US
dc.identifier.citedreferenceTaylor, M. A., and A. Fournier ( 2010 ), A compatible and conservative spectral element method on unstructured grids, J. Comput. Phys., 229 ( 17 ), 5879 – 5895.en_US
dc.identifier.citedreferenceTomita, H. ( 2008 ), A stretched icosahedral grid by a new grid transformation, J. Meteorol. Soc. Jpn., 86 ( 0 ), 107 – 119.en_US
dc.identifier.citedreferenceVitart, F., J. L. Anderson, and W. F. Stern ( 1997 ), Simulation of interannual variability of tropical storm frequency in an ensemble of GCM integrations, J. Clim., 10 ( 4 ), 745 – 760.en_US
dc.identifier.citedreferenceWalko, R. L., and R. Avissar ( 2011 ), A direct method for constructing refined regions in unstructured conforming triangular–hexagonal computational grids: Application to OLAM, Mon. Weather Rev., 139 ( 12 ), 3923 – 3937, doi: 10.1175/MWR‐D‐11‐00021.1.en_US
dc.identifier.citedreferenceWalsh, K., S. Lavender, E. Scoccimarro, and H. Murakami ( 2013 ), Resolution dependence of tropical cyclone formation in CMIP3 and finer resolution models, Clim. Dyn., 40 ( 3–4 ), 585 – 599, doi: 10.1007/s00382‐012‐1298‐z.en_US
dc.identifier.citedreferenceWarner, T. T., R. A. Peterson, and R. E. Treadon ( 1997 ), A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction, Bull. Am. Meteorol. Soc., 78 ( 11 ), 2599 – 2617.en_US
dc.identifier.citedreferenceWieringa, J. ( 1992 ), Updating the Davenport roughness classification, J. Wind Eng. Ind. Aerodyn., 41 ( 1–3 ), 357 – 368, doi: 10.1016/0167‐6105(92)90434‐C.en_US
dc.identifier.citedreferenceWilliamson, D. L. ( 2013 ), The effect of time steps and time‐scales on parametrization suites, Q. J. R. Meteorol. Soc., 139 ( 671 ), 548 – 560, doi: 10.1002/qj.1992.en_US
dc.identifier.citedreferenceZarzycki, C. M., C. Jablonowski, and M. A. Taylor ( 2014a ), Using variable resolution meshes to model tropical cyclones in the Community Atmosphere Model, Mon. Weather Rev., 142 ( 3 ), 1221 – 1239, doi: 10.1175/MWR‐D‐13‐00179.1.en_US
dc.identifier.citedreferenceZarzycki, C. M., M. N. Levy, C. Jablonowski, J. R. Overfelt, M. A. Taylor, and P. A. Ullrich ( 2014b ), Aquaplanet experiments using CAM's variable‐resolution dynamical core, J. Clim., 27 ( 14 ), 5481 – 5503, doi: 10.1175/JCLI‐D‐14‐00004.1.en_US
dc.identifier.citedreferenceZhao, M., I. M. Held, S. J. Lin, and G. A. Vecchi ( 2009 ), Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50‐km resolution GCM, J. Clim., 22 ( 24 ), 6653 – 6678.en_US
dc.identifier.citedreferenceZhao, M., I. M. Held, and S.‐J. Lin ( 2012 ), Some counterintuitive dependencies of tropical cyclone frequency on parameters in a GCM, J. Atmos. Sci., 69 ( 7 ), 2272 – 2283, doi: 10.1175/JAS‐D‐11‐0238.1.en_US
dc.identifier.citedreferenceAbiodun, B. J., J. M. Prusa, and W. J. Gutowski ( 2008 ), Implementation of a non‐hydrostatic, adaptive‐grid dynamics core in CAM3. Part I: Comparison of dynamics cores in aqua‐planet simulations, Clim. Dyn., 31 ( 7–8 ), 795 – 810.en_US
dc.identifier.citedreferenceAnderson, B. D., S. E. Benzley, and S. J. Owen ( 2009 ), Automatic all quadrilateral mesh adaption through refinement and coarsening, in Proceedings of the 18th International Meshing Roundtable, edited by B. W. Clark, pp. 557 – 574, Springer, Berlin.en_US
dc.identifier.citedreferenceAtkinson, G. D., and C. R. Holliday ( 1977 ), Tropical cyclone minimum sea level pressure/maximum sustained wind relationship for the western North Pacific, Mon. Weather Rev., 105 ( 4 ), 421 – 427.en_US
dc.identifier.citedreferenceBacmeister, J. T., M. F. Wehner, R. B. Neale, A. Gettelman, C. Hannay, P. H. Lauritzen, J. M. Caron, and J. E. Truesdale ( 2014 ), Exploratory high‐resolution climate simulations using the Community Atmosphere Model (CAM), J. Clim., 27 ( 9 ), 3073 – 3099, doi: 10.1175/JCLI‐D‐13‐00387.1.en_US
dc.identifier.citedreferenceBell, G. D., et al. ( 2000 ), Climate assessment for 1999, Bull. Am. Meteorol. Soc., 81, 1328 – 1328, doi: 10.1175/1520‐0477(2000)081<1328:CAF>2.3.CO;2.en_US
dc.identifier.citedreferenceBengtsson, L., K. I. Hodges, and M. Esch ( 2007 ), Tropical cyclones in a T159 resolution global climate model: Comparison with observations and re‐analyses, Tellus, Ser. A, 59 ( 4 ), 396 – 416, doi: 10.1111/j.1600‐0870.2007.00236.x.en_US
dc.identifier.citedreferenceBruyère, C. L., G. J. Holland, and E. Towler ( 2012 ), Investigating the use of a genesis potential index for tropical cyclones in the north Atlantic basin, J. Clim., 25 ( 24 ), 8611 – 8626, doi: 10.1175/JCLI‐D‐11‐00619.1.en_US
dc.identifier.citedreferenceCamargo, S., A. Sobel, A. Barnston, and K. Emanuel ( 2007 ), Tropical cyclone genesis potential index in climate models, Tellus, Ser. A, 59 ( 4 ), 428 – 443.en_US
dc.identifier.citedreferenceCamargo, S. J., and S. E. Zebiak ( 2002 ), Improving the detection and tracking of tropical cyclones in atmospheric general circulation models, Weather Forecasting, 17 ( 6 ), 1152 – 1162.en_US
dc.identifier.citedreferenceCaron, L.‐P., C. G. Jones, and K. Winger ( 2011 ), Impact of resolution and downscaling technique in simulating recent Atlantic tropical cyclone activity, Clim. Dyn., 37 ( 5–6 ), 869 – 892, doi: 10.1007/s00382‐010‐0846‐7.en_US
dc.identifier.citedreferenceChauvin, F., J.‐F. Royer, and M. Déqué ( 2006 ), Response of hurricane‐type vortices to global warming as simulated by ARPEGE‐Climat at high resolution, Clim. Dyn., 27 ( 4 ), 377 – 399, doi: 10.1007/s00382‐006‐0135‐7.en_US
dc.identifier.citedreferenceCôté, J., M. Roch, A. Staniforth, and L. Fillion ( 1993 ), A variable‐resolution semi‐Lagrangian finite‐element global‐model of the shallow‐water equations, Mon. Weather Rev., 121 ( 1 ), 231 – 243.en_US
dc.identifier.citedreferenceCraig, A. P., M. Vertenstein, and R. Jacob ( 2012 ), A new flexible coupler for earth system modeling developed for CCSM4 and CESM1, Int. J. High Performance Comput. Appl., 26 ( 1 ), 31 – 42, doi: 10.1177/1094342011428141.en_US
dc.identifier.citedreferenceDeMaria, M., and J. Kaplan ( 1994 ), Sea surface temperature and the maximum intensity of Atlantic tropical cyclones, J. Clim., 7 ( 9 ), 1324 – 1334, doi: 10.1175/1520‐0442(1994)007<1324:SSTATM>2.0.CO;2.en_US
dc.identifier.citedreferenceDennis, J. M., J. Edwards, K. J. Evans, O. Guba, P. H. Lauritzen, A. A. Mirin, A. St‐Cyr, M. A. Taylor, and P. H. Worley ( 2012 ), CAM‐SE: A scalable spectral element dynamical core for the Community Atmosphere Model, Int. J. High Performance Comput. Appl., 26 ( 1 ), 74 – 89, doi: 10.1177/1094342011428142.en_US
dc.identifier.citedreferenceEmanuel, K. ( 2001 ), Contribution of tropical cyclones to meridional heat transport by the oceans, J. Geophys. Res., 106 (D 14 ), 14,771 – 14,781.en_US
dc.identifier.citedreferenceEmanuel, K. A., and D. Nolan ( 2004 ), Tropical cyclone activity and the global climate system, Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 10A.2. [Available online at https://ams.confex.com/ams/26HURR/techprogram/paper_75463.htm ].en_US
dc.identifier.citedreferenceEvans, K. J., P. H. Lauritzen, S. K. Mishra, R. B. Neale, M. A. Taylor, and J. J. Tribbia ( 2013 ), AMIP simulation with the CAM4 spectral element dynamical core, J. Clim., 26 ( 3 ), 689 – 709, doi: 10.1175/JCLI‐D‐11‐00448.1.en_US
dc.identifier.citedreferenceFlato, G., et al. ( 2013 ), Evaluation of climate models, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by T. Stocker et al., pp. 741 – 866, Cambridge Univ. Press, Cambridge, U. K.en_US
dc.identifier.citedreferenceFrank, W. M. ( 1977 ), The structure and energetics of the tropical cyclone I. Storm structure, Mon. Weather Rev., 105 ( 9 ), 1119 – 1135.en_US
dc.identifier.citedreferenceGarratt, J. R. ( 1992 ), The Atmospheric Boundary Layer, 316 pp., Cambridge Univ. Press, Cambridge, U. K.en_US
dc.identifier.citedreferenceGates, W. L. ( 1992 ), AMIP: The Atmospheric Model Intercomparison Project, Bull. Am. Meteorol. Soc., 73, 1962 – 1970.en_US
dc.identifier.citedreferenceGiammanco, I. M., J. L. Schroeder, and M. D. Powell ( 2012 ), Observed characteristics of tropical cyclone vertical wind profiles, J. Wind Struct., 15, 1 – 22.en_US
dc.identifier.citedreferenceGray, W. M. ( 1984 ), Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb Quasi‐Biennial Oscillation influences, Mon. Weather Rev., 112 ( 9 ), 1649 – 1668, doi: 10.1175/1520‐0493(1984)112<1649:ASHFPI>2.0.CO;2.en_US
dc.identifier.citedreferenceGuishard, M. P., J. L. Evans, and R. E. Hart ( 2009 ), Atlantic subtropical storms. Part II: Climatology, J. Clim., 22 ( 13 ), 3574 – 3594.en_US
dc.identifier.citedreferenceHamilton, K. ( 2008 ), Numerical resolution and modeling of the global atmospheric circulation: A review of our current understanding and outstanding issues, in High Resolution Numerical Modelling of the Atmosphere and Ocean, edited by K. Hamilton and W. Ohfuchi, pp. 7 – 27, Springer, New York, doi: 10.1007/978‐0‐387‐49791‐4_1.en_US
dc.identifier.citedreferenceHarper, B. A., J. D. Kepert, and J. D. Ginger ( 2010 ), Guidelines for converting between various wind averaging periods in tropical cyclone conditions, Tech. Rep. WMO/TD‐1555, World Meteorol. Organ.en_US
dc.identifier.citedreferenceHarr, P. A. ( 2010 ), The extratropical transition of tropical cyclones: Structural characteristics, downstream impacts, and forecast challenges, in Global Perspectives on Tropical Cyclones: From Science to Mitigation, vol. 4, edited by J. C. L. Chan and J. D. Kepert, p. 436, World Sci, Singapore.en_US
dc.identifier.citedreferenceHarris, L. M., and S.‐J. Lin ( 2013 ), A two‐way nested global‐regional dynamical core on the cubed‐sphere grid, Mon. Weather Rev., 141 ( 1 ), 283 – 306.en_US
dc.identifier.citedreferenceHart, R. E. ( 2011 ), An inverse relationship between aggregate northern hemisphere tropical cyclone activity and subsequent winter climate, Geophys. Res. Lett., 38, L01705, doi: 10.1029/2010GL045612.en_US
dc.identifier.citedreferenceHazelton, A. T., and R. E. Hart ( 2012 ), Hurricane eyewall slope as determined from airborne radar reflectivity data: Composites and case studies, Weather Forecasting, 28 ( 2 ), 368 – 386, doi: 10.1175/WAF‐D‐12‐00037.1.en_US
dc.identifier.citedreferenceHendricks, E. A., M. T. Montgomery, and C. A. Davis ( 2004 ), The role of “vortical” hot towers in the formation of tropical cyclone Diana (1984), J. Atmos. Sci., 61 ( 11 ), 1209 – 1232, doi: 10.1175/1520‐0469(2004)061<1209:TROVHT>2.0.CO;2.en_US
dc.identifier.citedreferenceHolopainen, E. O. ( 1967 ), On the mean meridional circulation and the flux of angular momentum over the northern hemisphere, Tellus, 19 ( 1 ), 1 – 13, doi: 10.1111/j.2153‐3490.1967.tb01453.x.en_US
dc.identifier.citedreferenceHurrell, J. W., J. J. Hack, D. Shea, J. M. Caron, and J. Rosinski ( 2008 ), A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model, J. Clim., 21 ( 19 ), 5145 – 5153, doi: 10.1175/2008JCLI2292.1.en_US
dc.identifier.citedreferenceKalnay, E., et al. ( 1996 ), The NCEP/NCAR 40‐year reanalysis project, Bull. Am. Meteorol. Soc., 77 ( 3 ), 437 – 471, doi: 10.1175/1520‐0477(1996)077<0437:TNYRP>2.0.CO;2.en_US
dc.identifier.citedreferenceKnaff, J. A., and R. M. Zehr ( 2007 ), Reexamination of tropical cyclone wind‐pressure relationships, Weather Forecasting, 22 ( 1 ), 71 – 88, doi: 10.1175/WAF965.1.en_US
dc.identifier.citedreferenceKnapp, K. R., M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann ( 2010 ), The international best track archive for climate stewardship (IBTrACS), Bull. Am. Meteorol. Soc., 91 ( 3 ), 363 – 376, doi: 10.1175/2009BAMS2755.1.en_US
dc.identifier.citedreferenceKnutson, T. R., J. J. Sirutis, S. T. Garner, I. M. Held, and R. E. Tuleya ( 2007 ), Simulation of the recent multidecadal increase of Atlantic hurricane activity using an 18‐km‐grid regional model, Bull. Am. Meteorol. Soc., 88, 1549, doi: 10.1175/BAMS‐88‐10‐1549.en_US
dc.identifier.citedreferenceLandsea, C. W., G. A. Vecchi, L. Bengtsson, and T. R. Knutson ( 2009 ), Impact of duration thresholds on Atlantic tropical cyclone counts, J. Clim., 23 ( 10 ), 2508 – 2519, doi: 10.1175/2009JCLI3034.1.en_US
dc.identifier.citedreferenceLaRow, T. E., Y.‐K. Lim, D. W. Shin, E. P. Chassignet, and S. Cocke ( 2008 ), Atlantic basin seasonal hurricane simulations, J. Clim., 21 ( 13 ), 3191 – 3206, doi: 10.1175/2007JCLI2036.1.en_US
dc.identifier.citedreferenceLauritzen, P. H., J. Bacmeister, M. A. Taylor, and R. B. Neale ( 2012 ), New CAM (NSF‐DOE Community Atmosphere Model) topography generation software: CAM5.2, Abstract A53C‐0157 presented at 2012 Fall Meeting, AGU, San Francisco, Calif., 3 – 7 Dec.en_US
dc.identifier.citedreferenceLauritzen, P. H., J. T. Bacmeister, T. Dubos, S. Lebonnois, and M. A. Taylor ( 2014 ), Held‐Suarez simulations with the Community Atmosphere Model Spectral Element (CAM‐SE) dynamical core: A global axial angular momentum analysis using Eulerian and floating Lagrangian vertical coordinates, J. Adv. Model. Earth Syst., 6, 129 – 140, doi: 10.1002/2013MS000268.en_US
dc.identifier.citedreferenceManganello, J. V., et al. ( 2012 ), Tropical cyclone climatology in a 10‐km global atmospheric GCM: Toward weather‐resolving climate modeling, J. Clim., 25 ( 11 ), 3867 – 3893, doi: 10.1175/JCLI‐D‐11‐00346.1.en_US
dc.identifier.citedreferenceMendelsohn, R., K. Emanuel, S. Chonabayashi, and L. Bakkensen ( 2012 ), The impact of climate change on global tropical cyclone damage, Nat. Clim. Change, 2 ( 3 ), 205 – 209.en_US
dc.identifier.citedreferenceMesinger, F., and K. Veljovic ( 2013 ), Limited area NWP and regional climate modeling: A test of the relaxation vs Eta lateral boundary conditions, Meteorol. Atmos. Phys., 119 ( 1–2 ), 1 – 16, doi: 10.1007/s00703‐012‐0217‐5.en_US
dc.identifier.citedreferenceMurakami, H., et al. ( 2012 ), Future changes in tropical cyclone activity projected by the new high‐resolution MRI‐AGCM, J. Clim., 25 ( 9 ), 3237 – 3260, doi: 10.1175/JCLI‐D‐11‐00415.1.en_US
dc.identifier.citedreferenceNeale, R. B., et al. ( 2010 ), Description of the NCAR Community Atmosphere Model (CAM 5.0), NCAR Technical Note NCAR/TN‐486+STR, Natl. Cent. for Atmos. Res., Boulder, Colo.en_US
dc.identifier.citedreferenceOouchi, K., J. Yoshimura, H. Yoshimura, R. Mizuta, S. Kusunoki, and A. Noda ( 2006 ), Tropical cyclone climatology in a global‐warming climate as simulated in a 20 km‐mesh global atmospheric model: Frequency and wind intensity analyses, J. Meteorol. Soc. Jpn., 84 ( 2 ), 259 – 276.en_US
dc.identifier.citedreferencePeixoto, J. P., and A. H. Oort ( 1992 ), Physics of Climate, 520 pp., Am. Inst. of Phys., New York.en_US
dc.identifier.citedreferencePersing, J., M. T. Montgomery, J. C. McWilliams, and R. K. Smith ( 2013 ), Asymmetric and axisymmetric dynamics of tropical cyclones, Atmos. Chem. Phys. Discuss., 13 ( 5 ), 13,323 – 13,438, doi: 10.5194/acpd‐13‐13323‐2013.en_US
dc.identifier.citedreferencePrice, J. F. ( 1981 ), Upper ocean response to a hurricane, J. Phys. Oceanogr., 11 ( 2 ), 153 – 175.en_US
dc.identifier.citedreferenceReed, K. A., C. Jablonowski, and M. A. Taylor ( 2012 ), Tropical cyclones in the spectral element configuration of the Community Atmosphere Model, Atmos. Sci. Lett., 13 ( 4 ), 303 – 310.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.