Show simple item record

Protease‐Sensitive PEG Hydrogels Regulate Vascularization In Vitro and In Vivo

dc.contributor.authorVigen, Marinaen_US
dc.contributor.authorCeccarelli, Jacoben_US
dc.contributor.authorPutnam, Andrew J.en_US
dc.date.accessioned2014-11-04T16:35:46Z
dc.date.availableWITHHELD_12_MONTHSen_US
dc.date.available2014-11-04T16:35:46Z
dc.date.issued2014-10en_US
dc.identifier.citationVigen, Marina; Ceccarelli, Jacob; Putnam, Andrew J. (2014). "Protease‐Sensitive PEG Hydrogels Regulate Vascularization In Vitro and In Vivo." Macromolecular Bioscience 14(10): 1368-1379.en_US
dc.identifier.issn1616-5187en_US
dc.identifier.issn1616-5195en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/109336
dc.description.abstractForming functional blood vessel networks in engineered or ischemic tissues is a significant scientific and clinical hurdle. Poly(ethylene glycol) (PEG)‐based hydrogels are adapted to investigate the role of mechanical properties and proteolytic susceptibility on vascularization. Four arm PEG vinyl sulfone is polymerized by Michael‐type addition with cysteine groups on a slowly degraded matrix metalloprotease (MMP) susceptible peptide, GPQG↓IWGQ, or a more rapidly cleaved peptide, VPMS↓MRGG. Co‐encapsulation of endothelial cells and supportive fibroblasts within the gels lead to vascular morphogenesis in vitro that is robust to changes in crosslinking peptide identity, but is significantly attenuated by increased crosslinking and MMP inhibition. Perfused vasculature forms from transplanted cells in vivo in all gel types; however, in contrast to the in vitro results, vascularization in vivo is not decreased in the more crosslinked gels. Collectively, these findings demonstrate the utility of this platform to support vascularization both in vitro and in vivo. Co‐encapsulation of endothelial cells and supportive fibroblasts within proteolyzable poly(ethylene glycol) (PEG)‐based hydrogels leads to vascular morphogenesis in vitro that is robust to changes in crosslinking peptide identity but is significantly attenuated by gel crosslinking and MMP inhibition. In vivo, perfused vasculature forms from transplanted cells in all gel types, and vascularization is not attenuated in more crosslinked gels.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherMechanical Propertiesen_US
dc.subject.otherPoly(Ethylene Glycol)en_US
dc.subject.otherMatrix Metalloproteinaseen_US
dc.subject.otherAnimal Modelsen_US
dc.subject.otherAngiogenesisen_US
dc.titleProtease‐Sensitive PEG Hydrogels Regulate Vascularization In Vitro and In Vivoen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109336/1/mabi201400161.pdf
dc.identifier.doi10.1002/mabi.201400161en_US
dc.identifier.sourceMacromolecular Bioscienceen_US
dc.identifier.citedreferenceC. M. Ghajar, K. S. Blevins, C. C. Hughes, S. C. George, A. J. Putnam, Tissue Eng. 2006, 12, 2875.en_US
dc.identifier.citedreferenceG. P. Raeber, M. P. Lutolf, J. A. Hubbell, Acta Biomater. 2007, 3, 615.en_US
dc.identifier.citedreferenceG. P. Raeber, M. P. Lutolf, J. A. Hubbell, Biomech. Model. Mechanobiol. 2008, 7, 215.en_US
dc.identifier.citedreferenceD. Seliktar, A. H. Zisch, M. P. Lutolf, J. L. Wrana, J. A. Hubbell, J. Biomed. Mater. Res. 2004, 68A, 704.en_US
dc.identifier.citedreferenceS. Sokic, G. Papavasiliou, Tissue Eng. Part A 2012, 18, 2477.en_US
dc.identifier.citedreferenceJ. J. Moon, J. E. Saik, R. A. Poche, J. E. Leslie‐Barbick, S. H. Lee, A. A. Smith, M. E. Dickinson, J. L. West, Biomaterials 2010, 31, 3840.en_US
dc.identifier.citedreferenceS. Sokic, G. Papavasiliou, Acta Biomater. 2012, 8, 2213.en_US
dc.identifier.citedreferenceE. A. Phelps, D. M. Headen, W. R. Taylor, P. M. Thule, A. J. Garcia, Biomaterials 2013, 34, 4602.en_US
dc.identifier.citedreferenceM. P. Lutolf, J. A. Hubbell, Nat. Biotechnol. 2005, 23, 47.en_US
dc.identifier.citedreferenceA. H. Zisch, M. P. Lutolf, M. Ehrbar, G. P. Raeber, S. C. Rizzi, N. Davies, H. G. Schmoekel, D. Bezuidenhout, V. Djonov, P. Zilla, J. A. Hubbell, FASEB J. 2003, 17, 2260.en_US
dc.identifier.citedreferenceJ. E. Saik, D. J. Gould, E. M. Watkins, M. E. Dickinson, J. L. West, Acta Biomater. 2011, 7, 133.en_US
dc.identifier.citedreferenceJ. E. Saik, D. J. Gould, A. H. Keswani, M. E. Dickinson, J. L. West, Biomacromolecules 2011, 12, 2715.en_US
dc.identifier.citedreferenceM. S. Stosich, B. Bastian, N. W. Marion, P. A. Clark, G. Reilly, J. J. Mao, Tissue Eng. 2007, 13, 2881.en_US
dc.identifier.citedreferenceE. A. Phelps, N. Landazuri, P. M. Thule, W. R. Taylor, A. J. Garcia, Proc. Natl. Acad. Sci. USA 2010, 107, 3323.en_US
dc.identifier.citedreferenceE. A. Phelps, K. L. Templeman, P. M. Thulé, A. J. García, Drug Deliv. Transl. Res. 2013, DOI: 10.1007/s13346‐013‐0142‐2.en_US
dc.identifier.citedreferenceJ. E. Leslie‐Barbick, C. Shen, C. Chen, J. L. West, Tissue Eng. Part A 2011, 17, 221.en_US
dc.identifier.citedreferenceM. P. Lutolf, J. A. Hubbell, Biomacromolecules 2003, 4, 713.en_US
dc.identifier.citedreferenceS. Khetan, J. Burdick, J. Vis. Exp.: JoVE 2009, 32, e1590.en_US
dc.identifier.citedreferenceP. J. Martens, S. H. Bryant, K. S. Anseth, Biomacromolecules 2003, 4, 283.en_US
dc.identifier.citedreferenceR. K. Singh, D. Seliktar, A. J. Putnam, Biomaterials 2013, 34, 9331.en_US
dc.identifier.citedreferenceS. J. Grainger, A. J. Putnam, PLoS ONE 2011, 6, 1.en_US
dc.identifier.citedreferenceS. J. Grainger, B. Carrion, J. Ceccarelli, A. J. Putnam, Tissue Eng. Part A 2013, 19, 1209.en_US
dc.identifier.citedreferenceM. Bracher, D. Bezuidenhout, M. P. Lutolf, T. Franz, M. Sun, P. Zilla, N. H. Davies, Biomaterials 2013, 34, 6797.en_US
dc.identifier.citedreferenceB. E. Turk, L. L. Huang, E. T. Piro, L. C. Cantley, Nat. Biotechnol. 2001, 19, 661.en_US
dc.identifier.citedreferenceA. W. Watkins, K. S. Anseth, Macromolecules 2005, 38, 1326.en_US
dc.identifier.citedreferenceG. P. Raeber, M. P. Lutolf, J. A. Hubbell, Biophys. J. 2005, 89, 1374.en_US
dc.identifier.citedreferenceC. M. Ghajar, S. C. George, A. J. Putnam, Crit. Rev. Eukaryot. Gene Expr. 2008, 18, 251.en_US
dc.identifier.citedreferenceJ. E. Leslie‐Barbick, J. E. Saik, D. J. Gould, M. E. Dickinson, J. L. West, Biomaterials 2011, 32, 5782.en_US
dc.identifier.citedreferenceJ. S. Miller, C. J. Shen, W. R. Legant, J. D. Baranski, B. L. Blakely, C. S. Chen, Biomaterials 2010, 31, 3736.en_US
dc.identifier.citedreferenceFacts about Peripheral Artery Disease (PAD), U.S. Department of Health and Human Services, National Institutes of Health, NHLBI, NIH publication 06‐5837 2006.en_US
dc.identifier.citedreferenceR. K. Jain, P. Au, J. Tam, D. G. Duda, D. Fukumura, Nat. Biotechnol. 2005, 23, 821.en_US
dc.identifier.citedreferenceX. Chen, A. S. Aledia, C. M. Ghajar, C. K. Griffith, A. J. Putnam, C. C. Hughes, J. P. George, Tissue Eng. Part A 2009, 15, 1363.en_US
dc.identifier.citedreferenceX. Chen, A. S. Aledia, S. A. Popson, L. Him, C. C. Hughes, S. C. George, Tissue Eng. Part A 2010, 16, 585.en_US
dc.identifier.citedreferenceP. Au, J. Tam, D. Fukumura, R. K. Jain, Blood 2008, 111, 4551.en_US
dc.identifier.citedreferenceA. C. Newman, M. N. Nakatsu, W. Chou, P. D. Gershon, C. C. Hughes, Mol. Biol. Cell 2011, 22, 3791.en_US
dc.identifier.citedreferenceM. N. Nakatsu, R. C. A. Sainson, J. N. Aoto, K. L. Taylor, M. Aitkenhead, S. Pérez‐del‐Pulgar, P. M. Carpenter, C. C. W. Hughes, Microvasc. Res. 2003, 66, 102.en_US
dc.identifier.citedreferenceE. Kniazeva, A. J. Putnam, Am. J. Physiol. Cell Physiol. 2009, 297, C179.en_US
dc.identifier.citedreferenceC. M. Ghajar, X. Chen, J. W. Harris, V. Suresh, C. C. Hughes, N. L. Jeon, A. J. Putnam, S. C. George, Biophys. J. 2008, 94, 1930.en_US
dc.identifier.citedreferenceC. M. Ghajar, S. Kachgal, E. Kniazeva, H. Mori, S. V. Costes, S. C. George, A. J. Putnam, Exp. Cell Res. 2010, 316, 813.en_US
dc.identifier.citedreferenceS. Kachgal, A. J. Putnam, Angiogenesis 2011, 14, 47.en_US
dc.identifier.citedreferenceS. Kachgal, B. Carrion, I. A. Janson, A. J. Putnam, J. Cell. Physiol. 2012, 227, 3546.en_US
dc.identifier.citedreferenceJ. M. Melero‐Martin, Z. A. Khan, A. Picard, X. Wu, S. Paruchuri, J. Bischoff, Blood 2007, 109, 4761.en_US
dc.identifier.citedreferenceJ. M. Melero‐Martin, M. E. De Obaldia, S. Y. Kang, Z. A. Khan, L. Yuan, P. Oettgen, J. Bischoff, Circ. Res. 2008, 103, 194.en_US
dc.identifier.citedreferenceK. T. Morin, R. T. Tranquillo, Exp. Cell Res. 2013, 319, 2409.en_US
dc.identifier.citedreferenceP. Au, L. M. Daheron, D. G. Duda, K. S. Cohen, J. A. Tyrrell, R. M. Lanning, D. Fukumura, D. T. Scadden, R. K. Jain, Blood 2008, 111, 1302.en_US
dc.identifier.citedreferenceN. Koike, D. Fukumura, O. Gralla, P. Au, J. S. Schechner, R. K. Jain, Nature 2004, 428, 138.en_US
dc.identifier.citedreferenceC. Adelow, T. Segura, J. A. Hubbell, P. Frey, Biomaterials 2008, 29, 314.en_US
dc.identifier.citedreferenceS. B. Anderson, C. C. Lin, D. V. Kuntzler, K. S. Anseth, Biomaterials 2011, 32, 3564.en_US
dc.identifier.citedreferenceC. S. Bahney, C. W. Hsu, J. U. Yoo, J. L. West, B. Johnstone, FASEB J. 2011, 25, 1486.en_US
dc.identifier.citedreferenceJ. H. Collier, T. Segura, Biomaterials 2011, 32, 4198.en_US
dc.identifier.citedreferenceT. P. Kraehenbuehl, L. S. Ferreira, P. Zammaretti, J. A. Hubbell, R. Langer, Biomaterials 2009, 30, 4318.en_US
dc.identifier.citedreferenceM. P. Lutolf, J. L. Lauer‐Fields, H. G. Schmoekel, A. T. Metters, F. E. Weber, G. B. Fields, J. A. Hubbell, Proc. Natl. Acad. Sci. USA 2003, 100, 5413.en_US
dc.identifier.citedreferenceM. P. Lutolf, G. P. Raeber, A. H. Zisch, N. Tirelli, J. A. Hubbell, Adv. Mater. 2003, 15, 888.en_US
dc.identifier.citedreferenceJ. Patterson, J. A. Hubbell, Biomaterials 2010, 31, 7836.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.