Show simple item record

Targeting the N otch signaling pathway in cancer therapeutics

dc.contributor.authorGuo, Huajiaoen_US
dc.contributor.authorLu, Yien_US
dc.contributor.authorWang, Jianhuaen_US
dc.contributor.authorLiu, Xiaen_US
dc.contributor.authorKeller, Evan T.en_US
dc.contributor.authorLiu, Qianen_US
dc.contributor.authorZhou, Qinghuaen_US
dc.contributor.authorZhang, Jianen_US
dc.date.accessioned2014-11-04T16:35:49Z
dc.date.availableWITHHELD_13_MONTHSen_US
dc.date.available2014-11-04T16:35:49Z
dc.date.issued2014-11en_US
dc.identifier.citationGuo, Huajiao; Lu, Yi; Wang, Jianhua; Liu, Xia; Keller, Evan T.; Liu, Qian; Zhou, Qinghua; Zhang, Jian (2014). "Targeting the N otch signaling pathway in cancer therapeutics." Thoracic Cancer (6): 473-486.en_US
dc.identifier.issn1759-7706en_US
dc.identifier.issn1759-7714en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/109341
dc.description.abstractDespite advances in surgery, imaging, chemotherapy, and radiotherapy, the poor overall cancer‐related death rate remains unacceptable. Novel therapeutic strategies are desperately needed. Nowadays, targeted therapy has become the most promising therapy and a welcome asset to the cancer therapeutic arena. There is a large body of evidence demonstrating that the N otch signaling pathway is critically involved in the pathobiology of a variety of malignancies. In this review, we provide an overview of emerging data, highlight the mechanism of the N otch signaling pathway in the development of a wide range of cancers, and summarize recent progress in therapeutic targeting of the N otch signaling pathway.en_US
dc.publisherWiley Periodicals, Inc.en_US
dc.subject.otherCanceren_US
dc.subject.otherOncogeneen_US
dc.subject.otherN Otch Signaling Pathwayen_US
dc.subject.otherTumor Suppressor Geneen_US
dc.subject.otherTargeted Therapeuticsen_US
dc.titleTargeting the N otch signaling pathway in cancer therapeuticsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelHematology and Oncologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109341/1/tca12143.pdf
dc.identifier.doi10.1111/1759-7714.12143en_US
dc.identifier.sourceThoracic Canceren_US
dc.identifier.citedreferenceWesthoff B, Colaluca IN, D'Ario G et al. Alterations of the Notch pathway in lung cancer. Proc Natl Acad Sci U S A 2009; 106: 22293 – 22298.en_US
dc.identifier.citedreferenceJoseph NM, Morrison SJ. Toward an understanding of the physiological function of Mammalian stem cells. Dev Cell 2005; 9: 173 – 183.en_US
dc.identifier.citedreferenceKeith B, Simon MC. Hypoxia‐inducible factors, stem cells, and cancer. Cell 2007; 129: 465 – 472.en_US
dc.identifier.citedreferenceAilles LE, Weissman IL. Cancer stem cells in solid tumors. Curr Opin Biotechnol 2007; 18: 460 – 466.en_US
dc.identifier.citedreferenceBouras T, Pal B, Vaillant F et al. Notch signaling regulates mammary stem cell function and luminal cell‐fate commitment. Cell Stem Cell 2008; 3: 429 – 441.en_US
dc.identifier.citedreferenceFan X, Khaki L, Zhu TS et al. NOTCH pathway blockade depletes CD133‐positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 2010; 28: 5 – 16.en_US
dc.identifier.citedreferenceCalvi LM, Adams GB, Weibrecht KW et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003; 425: 841 – 846.en_US
dc.identifier.citedreferenceMaillard I, Koch U, Dumortier A et al. Canonical notch signaling is dispensable for the maintenance of adult hematopoietic stem cells. Cell Stem Cell 2008; 2: 356 – 366.en_US
dc.identifier.citedreferenceMancini SJ, Mantei N, Dumortier A, Suter U, MacDonald HR, Radtke F. Jagged1‐dependent Notch signaling is dispensable for hematopoietic stem cell self‐renewal and differentiation. Blood 2005; 105: 2340 – 2342.en_US
dc.identifier.citedreferenceKrop I, Demuth T, Guthrie T et al. Phase I pharmacologic and pharmacodynamic study of the gamma secretase (Notch) inhibitor MK‐0752 in adult patients with advanced solid tumors. J Clin Oncol 2012; 30: 2307 – 2313.en_US
dc.identifier.citedreferenceFouladi M, Stewart CF, Olson J et al. Phase I trial of MK‐0752 in children with refractory CNS malignancies: a pediatric brain tumor consortium study. J Clin Oncol 2011; 29: 3529 – 3534.en_US
dc.identifier.citedreferenceTolcher AW, Messersmith WA, Mikulski SM et al. Phase I study of RO4929097, a gamma secretase inhibitor of Notch signaling, in patients with refractory metastatic or locally advanced solid tumors. J Clin Oncol 2012; 30: 2348 – 2353.en_US
dc.identifier.citedreferenceSearfoss GH, Jordan WH, Calligaro DO et al. Adipsin, a biomarker of gastrointestinal toxicity mediated by a functional gamma‐secretase inhibitor. J Biol Chem 2003; 278: 46107 – 46116.en_US
dc.identifier.citedreferenceWong GT, Manfra D, Poulet FM et al. Chronic treatment with the gamma‐secretase inhibitor LY‐411,575 inhibits beta‐amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J Biol Chem 2004; 279: 12876 – 12882.en_US
dc.identifier.citedreferencevan Es JH, van Gijn ME, Riccio O et al. Notch/gamma‐ secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 2005; 435: 959 – 963.en_US
dc.identifier.citedreferenceKonishi J, Kawaguchi KS, Vo H et al. Gamma‐secretase inhibitor prevents Notch3 activation and reduces proliferation in human lung cancers. Cancer Res 2007; 67: 8051 – 8057.en_US
dc.identifier.citedreferenceMeng RD, Shelton CC, Li YM et al. gamma‐Secretase inhibitors abrogate oxaliplatin‐induced activation of the Notch‐1 signaling pathway in colon cancer cells resulting in enhanced chemosensitivity. Cancer Res 2009; 69: 573 – 582.en_US
dc.identifier.citedreferenceSchott AF, Landis MD, Dontu G et al. Preclinical and clinical studies of gamma secretase inhibitors with docetaxel on human breast tumors. Clin Cancer Res 2013; 19: 1512 – 1524.en_US
dc.identifier.citedreferenceYu S, Zhang R, Liu F, Hu H, Wang H. Down‐regulation of Notch signaling by a gamma‐secretase inhibitor enhances the radiosensitivity of nasopharyngeal carcinoma cells. Oncol Rep 2011; 26: 1323 – 1328.en_US
dc.identifier.citedreferenceHarrison H, Farnie G, Howell SJ et al. Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res 2010; 70: 709 – 718.en_US
dc.identifier.citedreferenceGroth C, Fortini ME. Therapeutic approaches to modulating Notch signaling: current challenges and future prospects. Semin Cell Dev Biol 2012; 23: 465 – 472.en_US
dc.identifier.citedreferenceEspinoza I, Miele L. Notch inhibitors for cancer treatment. Pharmacol Ther 2013; 139: 95 – 110.en_US
dc.identifier.citedreferenceShih IM, Wang TL. Notch signaling, gamma‐secretase inhibitors, and cancer therapy. Cancer Res 2007; 67: 1879 – 1882.en_US
dc.identifier.citedreferenceFan X, Mikolaenko I, Elhassan I et al. Notch1 and notch2 have opposite effects on embryonal brain tumor growth. Cancer Res 2004; 64: 7787 – 7793.en_US
dc.identifier.citedreferenceYamamoto S, Charng WL, Rana NA et al. A mutation in EGF repeat‐8 of Notch discriminates between Serrate/Jagged and Delta family ligands. Science 2012; 338: 1229 – 1232.en_US
dc.identifier.citedreferenceMorgan TH. The theory of the gene. Am Nat 1917; 51: 513 – 544.en_US
dc.identifier.citedreferenceArtavanis‐Tsakonas S, Muskavitch MA, Yedvobnick B. Molecular cloning of Notch, a locus affecting neurogenesis in Drosophila melanogaster. Proc Natl Acad Sci U S A 1983; 80: 1977 – 1981.en_US
dc.identifier.citedreferenceAlmén MS, Nordström KJ, Fredriksson R, Schiöth HB. Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biol 2009; 7: 50.en_US
dc.identifier.citedreferenceIlagan MX, Kopan R. SnapShot: Notch signaling pathway. Cell 2007; 128: 1246.en_US
dc.identifier.citedreferenceWeinmaster G. The ins and outs of Notch signaling. Mol Cell Neurosci 1997; 9: 91 – 102.en_US
dc.identifier.citedreferenceWeng AP, Ferrando AA, Lee W et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269 – 271.en_US
dc.identifier.citedreferenceBolós V, Grego‐Bessa J, de la Pompa JL. Notch signaling in development and cancer. Endocr Rev 2007; 28: 339 – 363.en_US
dc.identifier.citedreferenceKopan R, Ilagan MX. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 2009; 137: 216 – 233.en_US
dc.identifier.citedreferenceLe Gall M, De Mattei C, Giniger E. Molecular separation of two signaling pathways for the receptor, Notch. Dev Biol 2008; 313: 556 – 567.en_US
dc.identifier.citedreferenceBarolo S, Posakony JW. Three habits of highly effective signaling pathways: principles of transcriptional control by developmental cell signaling. Genes Dev 2002; 16: 1167 – 1181.en_US
dc.identifier.citedreferenceGerhart J. 1998 Warkany lecture: signaling pathways in development. Teratology 1999; 60: 226 – 239.en_US
dc.identifier.citedreferenceBlaumueller CM, Qi H, Zagouras P, Artavanis‐Tsakonas S. Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell 1997; 90: 281 – 291.en_US
dc.identifier.citedreferenceLogeat F, Bessia C, Brou C et al. The Notch1 receptor is cleaved constitutively by a furin‐like convertase. Proc Natl Acad Sci U S A 1998; 95: 8108 – 8112.en_US
dc.identifier.citedreferenceBrou C, Logeat F, Gupta N et al. A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin‐metalloprotease TACE. Mol Cell 2000; 5: 207 – 216.en_US
dc.identifier.citedreferenceMumm JS, Schroeter EH, Saxena MT et al. A ligand‐induced extracellular cleavage regulates gamma‐secretase‐like proteolytic activation of Notch1. Mol Cell 2000; 5: 197 – 206.en_US
dc.identifier.citedreferenceDe Strooper B, Annaert W, Cupers P et al. A presenilin‐1‐dependent gamma‐secretase‐like protease mediates release of Notch intracellular domain. Nature 1999; 398: 518 – 522.en_US
dc.identifier.citedreferenceBorggrefe T, Oswald F. The Notch signaling pathway: transcriptional regulation at Notch target genes. Cell Mol Life Sci 2009; 66: 1631 – 1646.en_US
dc.identifier.citedreferenceHsieh JJ, Zhou S, Chen L, Young DB, Hayward SD. CIR, a corepressor linking the DNA binding factor CBF1 to the histone deacetylase complex. Proc Natl Acad Sci U S A 1999; 96: 23 – 28.en_US
dc.identifier.citedreferenceJarriault S, Brou C, Logeat F, Schroeter EH, Kopan R, Israel A. Signalling downstream of activated mammalian Notch. Nature 1995; 377: 355 – 358.en_US
dc.identifier.citedreferenceKao HY, Ordentlich P, Koyano‐Nakagawa N et al. A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. Genes Dev 1998; 12: 2269 – 2277.en_US
dc.identifier.citedreferenceFiúza UM, Arias AM. Cell and molecular biology of Notch. J Endocrinol 2007; 194: 459 – 474.en_US
dc.identifier.citedreferenceFortini ME, Artavanis‐Tsakonas S. The suppressor of hairless protein participates in notch receptor signaling. Cell 1994; 79: 273 – 282.en_US
dc.identifier.citedreferenceWu L, Griffin JD. Modulation of Notch signaling by mastermind‐like (MAML) transcriptional co‐activators and their involvement in tumorigenesis. Semin Cancer Biol 2004; 14: 348 – 356.en_US
dc.identifier.citedreferenceCadigan KM, Nusse R. Wnt signaling: a common theme in animal development. Genes Dev 1997; 11: 3286 – 3305.en_US
dc.identifier.citedreferenceWu L, Aster JC, Blacklow SC, Lake R, Artavanis‐Tsakonas S, Griffin JD. MAML1, a human homologue of Drosophila mastermind, is a transcriptional co‐activator for NOTCH receptors. Nat Genet 2000; 26: 484 – 489.en_US
dc.identifier.citedreferenceWu L, Sun T, Kobayashi K, Gao P, Griffin JD. Identification of a family of mastermind‐like transcriptional coactivators for mammalian notch receptors. Mol Cell Biol 2002; 22: 7688 – 7700.en_US
dc.identifier.citedreferenceIso T, Kedes L, Hamamori Y. HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 2003; 194: 237 – 255.en_US
dc.identifier.citedreferenceSchwanbeck R, Schroeder T, Henning K et al. Notch signaling in embryonic and adult myelopoiesis. Cells Tissues Organs 2008; 188: 91 – 102.en_US
dc.identifier.citedreferenceZanotti S, Canalis E. Notch and the skeleton. Mol Cell Biol 2010; 30: 886 – 896.en_US
dc.identifier.citedreferencePitsouli C, Delidakis C. The interplay between DSL proteins and ubiquitin ligases in Notch signaling. Development 2005; 132: 4041 – 4050.en_US
dc.identifier.citedreferenceKageyama R, Ohtsuka T, Kobayashi T. The Hes gene family: repressors and oscillators that orchestrate embryogenesis. Development 2007; 134: 1243 – 1251.en_US
dc.identifier.citedreferenceOhtsuka T, Ishibashi M, Gradwohl G, Nakanishi S, Guillemot F, Kageyama R. Hes1 and Hes5 as notch effectors in mammalian neuronal differentiation. EMBO J 1999; 18: 2196 – 2207.en_US
dc.identifier.citedreferenceKunnimalaiyaan M, Vaccaro AM, Ndiaye MA, Chen H. Overexpression of the NOTCH1 intracellular domain inhibits cell proliferation and alters the neuroendocrine phenotype of medullary thyroid cancer cells. J Biol Chem 2006; 281: 39819 – 39830.en_US
dc.identifier.citedreferenceRonchini C, Capobianco AJ. Induction of cyclin D1 transcription and CDK2 activity by Notch(ic): implication for cell cycle disruption in transformation by Notch(ic). Mol Cell Biol 2001; 21: 5925 – 5934.en_US
dc.identifier.citedreferenceWeng AP, Millholland JM, Yashiro‐Ohtani Y et al. c‐Myc is an important direct target of Notch1 in T‐cell acute lymphoblastic leukemia/lymphoma. Genes Dev 2006; 20: 2096 – 2109.en_US
dc.identifier.citedreferenceOswald F, Liptay S, Adler G, Schmid RM. NF‐kappaB2 is a putative target gene of activated Notch‐1 via RBP‐Jkappa. Mol Cell Biol 1998; 18: 2077 – 2088.en_US
dc.identifier.citedreferenceDiévart A, Beaulieu N, Jolicoeur P. Involvement of Notch1 in the development of mouse mammary tumors. Oncogene 1999; 18: 5973 – 5981.en_US
dc.identifier.citedreferenceChen Y, Fischer WH, Gill GN. Regulation of the ERBB‐2 promoter by RBPJkappa and NOTCH. J Biol Chem 1997; 272: 14110 – 14114.en_US
dc.identifier.citedreferenceArtavanis‐Tsakonas S, Rand MD, Lake RJ. Notch signaling: cell fate control and signal integration in development. Science 1999; 284: 770 – 776.en_US
dc.identifier.citedreferenceMiele L. Notch signaling. Clin Cancer Res 2006; 12: 1074 – 1079.en_US
dc.identifier.citedreferenceMiele L, Miao H, Nickoloff BJ. NOTCH signaling as a novel cancer therapeutic target. Curr Cancer Drug Targets 2006; 6: 313 – 323.en_US
dc.identifier.citedreferenceMiele L, Osborne B. Arbiter of differentiation and death: Notch signaling meets apoptosis. J Cell Physiol 1999; 181: 393 – 409.en_US
dc.identifier.citedreferenceEfstratiadis A, Szabolcs M, Klinakis A. Notch, Myc and breast cancer. Cell Cycle 2007; 6: 418 – 429.en_US
dc.identifier.citedreferenceAltieri DC. New wirings in the survivin networks. Oncogene 2008; 27: 6276 – 6284.en_US
dc.identifier.citedreferenceRyan BM, O'Donovan N, Duffy MJ. Survivin: a new target for anti‐cancer therapy. Cancer Treat Rev 2009; 35: 553 – 562.en_US
dc.identifier.citedreferenceEliasz S, Liang S, Chen Y et al. Notch‐1 stimulates survival of lung adenocarcinoma cells during hypoxia by activating the IGF‐1R pathway. Oncogene 2010; 29: 2488 – 2498.en_US
dc.identifier.citedreferenceNiessen K, Fu Y, Chang L, Hoodless PA, McFadden D, Karsan A. Slug is a direct Notch target required for initiation of cardiac cushion cellularization. J Cell Biol 2008; 182: 315 – 325.en_US
dc.identifier.citedreferenceHeitzler P. Biodiversity and noncanonical Notch signaling. Curr Top Dev Biol 2010; 92: 457 – 481.en_US
dc.identifier.citedreferenceD'Souza B, Meloty‐Kapella L, Weinmaster G. Canonical and non‐canonical Notch ligands. Curr Top Dev Biol 2010; 92: 73 – 129.en_US
dc.identifier.citedreferenceJin S, Mutvei AP, Chivukula IV et al. Non‐canonical Notch signaling activates IL‐6/JAK/STAT signaling in breast tumor cells and is controlled by p53 and IKKalpha/IKKbeta. Oncogene 2013; 32: 4892 – 4902.en_US
dc.identifier.citedreferenceGentle ME, Rose A, Bugeon L, Dallman MJ. Noncanonical Notch signaling modulates cytokine responses of dendritic cells to inflammatory stimuli. J Immunol 2012; 189: 1274 – 1284.en_US
dc.identifier.citedreferenceSong JK, Giniger E. Noncanonical Notch function in motor axon guidance is mediated by Rac GTPase and the GEF1 domain of Trio. Dev Dyn 2011; 240: 324 – 332.en_US
dc.identifier.citedreferenceWu F, Stutzman A, Mo YY. Notch signaling and its role in breast cancer. Front Biosci 2007; 12: 4370 – 4383.en_US
dc.identifier.citedreferenceGuo S, Liu M, Gonzalez‐Perez RR. Role of Notch and its oncogenic signaling crosstalk in breast cancer. Biochim Biophys Acta 2011; 1815: 197 – 213.en_US
dc.identifier.citedreferenceKaramboulas C, Ailles L. Developmental signaling pathways in cancer stem cells of solid tumors. Biochim Biophys Acta 2013; 1830: 2481 – 2495.en_US
dc.identifier.citedreferenceKatoh M. Networking of WNT, FGF, Notch, BMP, and Hedgehog signaling pathways during carcinogenesis. Stem Cell Rev 2007; 3: 30 – 38.en_US
dc.identifier.citedreferenceFre S, Pallavi SK, Huyghe M et al. Notch and Wnt signals cooperatively control cell proliferation and tumorigenesis in the intestine. Proc Natl Acad Sci U S A 2009; 106: 6309 – 6314.en_US
dc.identifier.citedreferenceQi J, Zhu YQ. Targeting the most upstream site of Wnt signaling pathway provides a strategic advantage for therapy in colorectal cancer. Curr Drug Targets 2008; 9: 548 – 557.en_US
dc.identifier.citedreferencePannequin J, Bonnans C, Delaunay N et al. The wnt target jagged‐1 mediates the activation of notch signaling by progastrin in human colorectal cancer cells. Cancer Res 2009; 69: 6065 – 6073.en_US
dc.identifier.citedreferenceSottnik JL, Hall CL, Zhang J, Keller ET. Wnt and Wnt inhibitors in bone metastasis. Bonekey Rep 2012; 1: 101.en_US
dc.identifier.citedreferenceGalceran J, Sustmann C, Hsu SC, Folberth S, Grosschedl R. LEF1‐mediated regulation of Delta‐like1 links Wnt and Notch signaling in somitogenesis. Genes Dev 2004; 18: 2718 – 2723.en_US
dc.identifier.citedreferenceKatoh M, Katoh M. Notch ligand, JAG1, is evolutionarily conserved target of canonical WNT signaling pathway in progenitor cells. Int J Mol Med 2006; 17: 681 – 685.en_US
dc.identifier.citedreferenceEstrach S, Ambler CA, Lo Celso C, Hozumi K, Watt FM. Jagged 1 is a beta‐catenin target gene required for ectopic hair follicle formation in adult epidermis. Development 2006; 133: 4427 – 4438.en_US
dc.identifier.citedreferenceRodilla V, Villanueva A, Obrador‐Hevia A et al. Jagged1 is the pathological link between Wnt and Notch pathways in colorectal cancer. Proc Natl Acad Sci U S A 2009; 106: 6315 – 6320.en_US
dc.identifier.citedreferenceAyyanan A, Civenni G, Ciarloni L et al. Increased Wnt signaling triggers oncogenic conversion of human breast epithelial cells by a Notch‐dependent mechanism. Proc Natl Acad Sci U S A 2006; 103: 3799 – 3804.en_US
dc.identifier.citedreferenceCamps J, Pitt JJ, Emons G et al. Genetic amplification of the NOTCH modulator LNX2 upregulates the WNT/beta‐catenin pathway in colorectal cancer. Cancer Res 2013; 73: 2003 – 2013.en_US
dc.identifier.citedreferenceDeregowski V, Gazzerro E, Priest L, Rydziel S, Canalis E. Notch 1 overexpression inhibits osteoblastogenesis by suppressing Wnt/beta‐catenin but not bone morphogenetic protein signaling. J Biol Chem 2006; 281: 6203 – 6210.en_US
dc.identifier.citedreferencePhng LK, Potente M, Leslie JD et al. Nrarp coordinates endothelial Notch and Wnt signaling to control vessel density in angiogenesis. Dev Cell 2009; 16: 70 – 82.en_US
dc.identifier.citedreferenceOgaki S, Shiraki N, Kume K, Kume S. Wnt and Notch signals guide embryonic stem cell differentiation into the intestinal lineages. Stem Cells 2013; 31: 1086 – 1096.en_US
dc.identifier.citedreferenceKishimoto T. Interleukin‐6: from basic science to medicine – 40 years in immunology. Annu Rev Immunol 2005; 23: 1 – 21.en_US
dc.identifier.citedreferenceGrivennikov S, Karin M. Autocrine IL‐6 signaling: a key event in tumorigenesis? Cancer Cell 2008; 13: 7 – 9.en_US
dc.identifier.citedreferenceHeinrich PC, Behrmann I, Müller‐Newen G, Schaper F, Graeve L. Interleukin‐6‐type cytokine signalling through the gp130/Jak/STAT pathway. Biochem J 1998; 334: 297 – 314.en_US
dc.identifier.citedreferenceHodge DR, Hurt EM, Farrar WL. The role of IL‐6 and STAT3 in inflammation and cancer. Eur J Cancer 2005; 41: 2502 – 2512.en_US
dc.identifier.citedreferenceSethi N, Dai X, Winter CG, Kang Y. Tumor‐derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 2011; 19: 192 – 205.en_US
dc.identifier.citedreferenceWang Y, Klijn JG, Zhang Y et al. Gene‐expression profiles to predict distant metastasis of lymph‐node‐negative primary breast cancer. Lancet 2005; 365: 671 – 679.en_US
dc.identifier.citedreferenceSalgado R, Junius S, Benoy I et al. Circulating interleukin‐6 predicts survival in patients with metastatic breast cancer. Int J Cancer 2003; 103: 642 – 646.en_US
dc.identifier.citedreferenceKorkaya H, Kim GI, Davis A et al. Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol Cell 2012; 47: 570 – 584.en_US
dc.identifier.citedreferenceKorkaya H, Liu S, Wicha MS. Regulation of cancer stem cells by cytokine networks: attacking cancer's inflammatory roots. Clin Cancer Res 2011; 17: 6125 – 6129.en_US
dc.identifier.citedreferenceSansone P, Storci G, Tavolari S et al. IL‐6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest 2007; 117: 3988 – 4002.en_US
dc.identifier.citedreferenceWongchana W, Palaga T. Direct regulation of interleukin‐6 expression by Notch signaling in macrophages. Cell Mol Immunol 2012; 9: 155 – 162.en_US
dc.identifier.citedreferenceHe W, Luistro L, Carvajal D et al. High tumor levels of IL6 and IL8 abrogate preclinical efficacy of the gamma‐secretase inhibitor, RO4929097. Mol Oncol 2011; 5: 292 – 301.en_US
dc.identifier.citedreferenceMars WM, Zarnegar R, Michalopoulos GK. Activation of hepatocyte growth factor by the plasminogen activators uPA and tPA. Am J Pathol 1993; 143: 949 – 958.en_US
dc.identifier.citedreferenceEllis V, Behrendt N, Dano K. Plasminogen activation by receptor‐bound urokinase. A kinetic study with both cell‐associated and isolated receptor. J Biol Chem 1991; 266: 12752 – 12758.en_US
dc.identifier.citedreferenceEllis V, Pyke C, Eriksen J, Solberg H, Dano K. The urokinase receptor: involvement in cell surface proteolysis and cancer invasion. Ann N Y Acad Sci 1992; 667: 13 – 31.en_US
dc.identifier.citedreferenceFisher JL, Mackie PS, Howard ML, Zhou H, Choong PF. The expression of the urokinase plasminogen activator system in metastatic murine osteosarcoma: an in vivo mouse model. Clin Cancer Res 2001; 7: 1654 – 1660.en_US
dc.identifier.citedreferenceShimizu M, Cohen B, Goldvasser P, Berman H, Virtanen C, Reedijk M. Plasminogen activator uPA is a direct transcriptional target of the JAG1‐Notch receptor signaling pathway in breast cancer. Cancer Res 2011; 71: 277 – 286.en_US
dc.identifier.citedreferenceHuang HY, Jiang ZF, Li QX et al. Inhibition of human breast cancer cell invasion by siRNA against urokinase‐type plasminogen activator. Cancer Invest 2010; 28: 689 – 697.en_US
dc.identifier.citedreferenceTang L, Han X. The urokinase plasminogen activator system in breast cancer invasion and metastasis. Biomed Pharmacother 2013; 67: 179 – 182.en_US
dc.identifier.citedreferenceGorantla B, Asuthkar S, Rao JS, Patel J, Gondi CS. Suppression of the uPAR‐uPA system retards angiogenesis, invasion, and in vivo tumor development in pancreatic cancer cells. Mol Cancer Res 2011; 9: 377 – 389.en_US
dc.identifier.citedreferencePappot H, Hoyer‐Hansen G, Ronne E et al. Elevated plasma levels of urokinase plasminogen activator receptor in non‐small cell lung cancer patients. Eur J Cancer 1997; 33: 867 – 872.en_US
dc.identifier.citedreferenceProvost JJ, Rastedt D, Canine J et al. Urokinase plasminogen activator receptor induced non‐small cell lung cancer invasion and metastasis requires NHE1 transporter expression and transport activity. Cell Oncol (Dordr) 2012; 35(2): 95 – 110.en_US
dc.identifier.citedreferenceZhang J, Sud S, Mizutani K, Gyetko MR, Pienta KJ. Activation of urokinase plasminogen activator and its receptor axis is essential for macrophage infiltration in a prostate cancer mouse model. Neoplasia 2011; 13: 23 – 30.en_US
dc.identifier.citedreferenceShariat SF, Roehrborn CG, McConnell JD et al. Association of the circulating levels of the urokinase system of plasminogen activation with the presence of prostate cancer and invasion, progression, and metastasis. J Clin Oncol 2007; 25: 349 – 355.en_US
dc.identifier.citedreferenceDuffy MJ. The urokinase plasminogen activator system: role in malignancy. Curr Pharm Des 2004; 10: 39 – 49.en_US
dc.identifier.citedreferenceChoong PF, Nadesapillai AP. Urokinase plasminogen activator system: a multifunctional role in tumor progression and metastasis. Clin Orthop Relat Res 2003; ( 415 Suppl. ): S46 – 58.en_US
dc.identifier.citedreferenceMazar AP, Ahn RW, O'Halloran TV. Development of novel therapeutics targeting the urokinase plasminogen activator receptor (uPAR) and their translation toward the clinic. Curr Pharm Des 2011; 17: 1970 – 1978.en_US
dc.identifier.citedreferenceNguyen DX, Bos PD, Massagué J. Metastasis: from dissemination to organ‐specific colonization. Nat Rev Cancer 2009; 9: 274 – 284.en_US
dc.identifier.citedreferenceRaghu H, Gondi CS, Dinh DH, Gujrati M, Rao JS. Specific knockdown of uPA/uPAR attenuates invasion in glioblastoma cells and xenografts by inhibition of cleavage and trafficking of Notch ‐1 receptor. Mol Cancer 2011; 10: 130 – 145.en_US
dc.identifier.citedreferenceWang Z, Li Y, Banerjee S et al. Down‐regulation of Notch‐1 and Jagged‐1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NF‐kappaB signaling pathways. J Cell Biochem 2010; 109: 726 – 736.en_US
dc.identifier.citedreferenceBin Hafeez B, Adhami VM, Asim M et al. Targeted knockdown of Notch1 inhibits invasion of human prostate cancer cells concomitant with inhibition of matrix metalloproteinase‐9 and urokinase plasminogen activator. Clin Cancer Res 2009; 15: 452 – 459.en_US
dc.identifier.citedreferenceEllisen LW, Bird J, West DC et al. TAN‐1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 1991; 66: 649 – 661.en_US
dc.identifier.citedreferenceThompson BJ, Buonamici S, Sulis ML et al. The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J Exp Med 2007; 204: 1825 – 1835.en_US
dc.identifier.citedreferenceReschly EJ, Spaulding C, Vilimas T et al. Notch1 promotes survival of E2A‐deficient T cell lymphomas through pre‐T cell receptor‐dependent and ‐independent mechanisms. Blood 2006; 107: 4115 – 4121.en_US
dc.identifier.citedreferenceSharma VM, Calvo JA, Draheim KM et al. Notch1 contributes to mouse T‐cell leukemia by directly inducing the expression of c‐myc. Mol Cell Biol 2006; 26: 8022 – 8031.en_US
dc.identifier.citedreferencePalomero T, Lim WK, Odom DT et al. NOTCH1 directly regulates c‐MYC and activates a feed‐forward‐loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci U S A 2006; 103: 18261 – 18266.en_US
dc.identifier.citedreferenceBeverly LJ, Felsher DW, Capobianco AJ. Suppression of p53 by Notch in lymphomagenesis: implications for initiation and regression. Cancer Res 2005; 65: 7159 – 7168.en_US
dc.identifier.citedreferenceBolós V, Mira E, Martínez‐Poveda B et al. Notch activation stimulates migration of breast cancer cells and promotes tumor growth. Breast Cancer Res 2013; 15: R54.en_US
dc.identifier.citedreferenceFarnie G, Clarke RB. Mammary stem cells and breast cancer – role of Notch signalling. Stem Cell Rev 2007; 3: 169 – 175.en_US
dc.identifier.citedreferenceSpeiser JJ, Ersahin C, Osipo C. The functional role of notch signaling in triple‐negative breast cancer. Vitam Horm 2013; 93: 277 – 306.en_US
dc.identifier.citedreferenceStylianou S, Clarke RB, Brennan K. Aberrant activation of notch signaling in human breast cancer. Cancer Res 2006; 66: 1517 – 1525.en_US
dc.identifier.citedreferenceGallahan D, Kozak C, Callahan R. A new common integration region (int‐3) for mouse mammary tumor virus on mouse chromosome 17. J Virol 1987; 61: 218 – 220.en_US
dc.identifier.citedreferenceJhappan C, Gallahan D, Stahle C et al. Expression of an activated Notch‐related int‐3 transgene interferes with cell differentiation and induces neoplastic transformation in mammary and salivary glands. Genes Dev 1992; 6: 345 – 355.en_US
dc.identifier.citedreferenceReedijk M, Odorcic S, Chang L et al. High‐level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res 2005; 65: 8530 – 8537.en_US
dc.identifier.citedreferencePece S, Serresi M, Santolini E et al. Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis. J Cell Biol 2004; 167: 215 – 221.en_US
dc.identifier.citedreferenceYabuuchi S, Pai SG, Campbell NR et al. Notch signaling pathway targeted therapy suppresses tumor progression and metastatic spread in pancreatic cancer. Cancer Lett 2013; 335: 41 – 51.en_US
dc.identifier.citedreferenceWang Z, Zhang Y, Li Y, Banerjee S, Liao J, Sarkar FH. Down‐regulation of Notch‐1 contributes to cell growth inhibition and apoptosis in pancreatic cancer cells. Mol Cancer Ther 2006; 5: 483 – 493.en_US
dc.identifier.citedreferenceHassan KA, Wang L, Korkaya H et al. Notch pathway activity identifies cells with cancer stem cell‐like properties and correlates with worse survival in lung adenocarcinoma. Clin Cancer Res 2013; 19: 1972 – 1980.en_US
dc.identifier.citedreferenceRazumilava N, Gores GJ. Notch‐driven carcinogenesis: the merging of hepatocellular cancer and cholangiocarcinoma into a common molecular liver cancer subtype. J Hepatol 2013; 58: 1244 – 1245.en_US
dc.identifier.citedreferenceBalint K, Xiao M, Pinnix CC et al. Activation of Notch1 signaling is required for beta‐catenin‐mediated human primary melanoma progression. J Clin Invest 2005; 115: 3166 – 3176.en_US
dc.identifier.citedreferenceLiu ZJ, Xiao M, Balint K et al. Notch1 signaling promotes primary melanoma progression by activating mitogen‐activated protein kinase/phosphatidylinositol 3‐kinase‐Akt pathways and up‐regulating N‐cadherin expression. Cancer Res 2006; 66: 4182 – 4190.en_US
dc.identifier.citedreferenceTien AC, Rajan A, Bellen HJ. A Notch updated. J Cell Biol 2009; 184: 621 – 629.en_US
dc.identifier.citedreferenceFortini ME. Notch signaling: the core pathway and its posttranslational regulation. Dev Cell 2009; 16: 633 – 647.en_US
dc.identifier.citedreferenceLeong KG, Niessen K, Kulic I et al. Jagged1‐mediated Notch activation induces epithelial‐to‐mesenchymal transition through Slug‐induced repression of E‐cadherin. J Exp Med 2007; 204: 2935 – 2948.en_US
dc.identifier.citedreferenceSethi S, Macoska J, Chen W, Sarkar FH. Molecular signature of epithelial‐mesenchymal transition (EMT) in human prostate cancer bone metastasis. Am J Transl Res 2010; 3: 90 – 99.en_US
dc.identifier.citedreferencePhillips TM, Kim K, Vlashi E, McBride WH, Pajonk F. Effects of recombinant erythropoietin on breast cancer‐initiating cells. Neoplasia 2007; 9: 1122 – 1129.en_US
dc.identifier.citedreferenceNicolas M, Wolfer A, Raj K et al. Notch1 functions as a tumor suppressor in mouse skin. Nat Genet 2003; 33: 416 – 421.en_US
dc.identifier.citedreferenceThélu J, Rossio P, Favier B. Notch signalling is linked to epidermal cell differentiation level in basal cell carcinoma, psoriasis and wound healing. BMC Dermatol 2002; 2: 7.en_US
dc.identifier.citedreferenceGat U, DasGupta R, Degenstein L, Fuchs E. De Novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta‐catenin in skin. Cell 1998; 95: 605 – 614.en_US
dc.identifier.citedreferenceZhu AJ, Watt FM. Beta‐catenin signalling modulates proliferative potential of human epidermal keratinocytes independently of intercellular adhesion. Development 1999; 126: 2285 – 2298.en_US
dc.identifier.citedreferenceDevgan V, Mammucari C, Millar SE, Brisken C, Dotto GP. p21WAF1/Cip1 is a negative transcriptional regulator of Wnt4 expression downstream of Notch1 activation. Genes Dev 2005; 19: 1485 – 1495.en_US
dc.identifier.citedreferenceKunnimalaiyaan M, Traeger K, Chen H. Conservation of the Notch1 signaling pathway in gastrointestinal carcinoid cells. Am J Physiol Gastrointest Liver Physiol 2005; 289: G636 – 642.en_US
dc.identifier.citedreferenceKunnimalaiyaan M, Yan S, Wong F, Zhang YW, Chen H. Hairy Enhancer of Split‐1 (HES‐1), a Notch1 effector, inhibits the growth of carcinoid tumor cells. Surgery 2005; 138: 1137 – 1142.en_US
dc.identifier.citedreferenceNakakura EK, Sriuranpong VR, Kunnimalaiyaan M et al. Regulation of neuroendocrine differentiation in gastrointestinal carcinoid tumor cells by notch signaling. J Clin Endocrinol Metab 2005; 90: 4350 – 4356.en_US
dc.identifier.citedreferenceSriuranpong V, Borges MW, Ravi RK et al. Notch signaling induces cell cycle arrest in small cell lung cancer cells. Cancer Res 2001; 61: 3200 – 3205.en_US
dc.identifier.citedreferenceChen Y, Li D, Liu H et al. Notch‐1 signaling facilitates survivin expression in human non‐small cell lung cancer cells. Cancer Biol Ther 2011; 11: 14 – 21.en_US
dc.identifier.citedreferenceDonnem T, Andersen S, Al‐Shibli K, Al‐Saad S, Busund LT, Bremnes RM. Prognostic impact of Notch ligands and receptors in nonsmall cell lung cancer: coexpression of Notch‐1 and vascular endothelial growth factor‐A predicts poor survival. Cancer 2010; 116: 5676 – 5685.en_US
dc.identifier.citedreferenceWang NJ, Sanborn Z, Arnett KL et al. Loss‐of‐function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma. Proc Natl Acad Sci U S A 2011; 108: 17761 – 17766.en_US
dc.identifier.citedreferenceRangarajan A, Talora C, Okuyama R et al. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J 2001; 20: 3427 – 3436.en_US
dc.identifier.citedreferenceNakhai H, Siveke JT, Klein B et al. Conditional ablation of Notch signaling in pancreatic development. Development 2008; 135: 2757 – 2765.en_US
dc.identifier.citedreferenceHanlon L, Avila JL, Demarest RM et al. Notch1 functions as a tumor suppressor in a model of K‐ras‐induced pancreatic ductal adenocarcinoma. Cancer Res 2010; 70: 4280 – 4286.en_US
dc.identifier.citedreferenceViatour P, Ehmer U, Saddic LA et al. Notch signaling inhibits hepatocellular carcinoma following inactivation of the RB pathway. J Exp Med 2011; 208: 1963 – 1976.en_US
dc.identifier.citedreferenceCroquelois A, Blindenbacher A, Terracciano L et al. Inducible inactivation of Notch1 causes nodular regenerative hyperplasia in mice. Hepatology 2005; 41: 487 – 496.en_US
dc.identifier.citedreferencevan Harn T, Foijer F, van Vugt M et al. Loss of Rb proteins causes genomic instability in the absence of mitogenic signaling. Genes Dev 2010; 24: 1377 – 1388.en_US
dc.identifier.citedreferenceQi R, An H, Yu Y et al. Notch1 signaling inhibits growth of human hepatocellular carcinoma through induction of cell cycle arrest and apoptosis. Cancer Res 2003; 63: 8323 – 8329.en_US
dc.identifier.citedreferenceBenitah SA, Valerón PF, van Aelst L, Marshall CJ, Lacal JC. Rho GTPases in human cancer: an unresolved link to upstream and downstream transcriptional regulation. Biochim Biophys Acta 2004; 1705: 121 – 132.en_US
dc.identifier.citedreferenceWilkinson S, Paterson HF, Marshall CJ. Cdc42‐MRCK and Rho‐ROCK signalling cooperate in myosin phosphorylation and cell invasion. Nat Cell Biol 2005; 7: 255 – 261.en_US
dc.identifier.citedreferenceSahai E, Marshall CJ. RHO‐GTPases and cancer. Nat Rev Cancer 2002; 2: 133 – 142.en_US
dc.identifier.citedreferenceLefort K, Mandinova A, Ostano P et al. Notch1 is a p53 target gene involved in human keratinocyte tumor suppression through negative regulation of ROCK1/2 and MRCKalpha kinases. Genes Dev 2007; 21: 562 – 577.en_US
dc.identifier.citedreferenceReya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105 – 111.en_US
dc.identifier.citedreferenceBonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730 – 737.en_US
dc.identifier.citedreferenceCollins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 2005; 65: 10946 – 10951.en_US
dc.identifier.citedreferenceLawson DA, Xin L, Lukacs RU, Cheng D, Witte ON. Isolation and functional characterization of murine prostate stem cells. Proc Natl Acad Sci U S A 2007; 104: 181 – 186.en_US
dc.identifier.citedreferenceMaitland NJ, Collins AT. Prostate cancer stem cells: a new target for therapy. J Clin Oncol 2008; 26: 2862 – 2870.en_US
dc.identifier.citedreferenceLi C, Heidt DG, Dalerba P et al. Identification of pancreatic cancer stem cells. Cancer Res 2007; 67: 1030 – 1037.en_US
dc.identifier.citedreferenceO'Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007; 445: 106 – 110.en_US
dc.identifier.citedreferenceRicci‐Vitiani L, Lombardi DG, Pilozzi E et al. Identification and expansion of human colon‐cancer‐initiating cells. Nature 2007; 445: 111 – 115.en_US
dc.identifier.citedreferenceSell S, Leffert HL. Liver cancer stem cells. (Published erratum appears in J Clin Oncol 2008; 26: 3819.) J Clin Oncol 2008; 26: 2800 – 2805.en_US
dc.identifier.citedreferencePeacock CD, Watkins DN. Cancer stem cells and the ontogeny of lung cancer. J Clin Oncol 2008; 26: 2883 – 2889.en_US
dc.identifier.citedreferenceAl‐Hajj M, Wicha MS, Benito‐Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. (Published erratum appears in Proc Natl Acad Sci U S A 2003; 100: 6890.) Proc Natl Acad Sci U S A 2003; 100: 3983 – 3988.en_US
dc.identifier.citedreferenceBray SJ. Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 2006; 7: 678 – 689.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.