Show simple item record

Enantioselective Synthesis of Piperidines through the Formation of Chiral Mixed Phosphoric Acid Acetals: Experimental and Theoretical Studies

dc.contributor.authorSun, Zhankuien_US
dc.contributor.authorWinschel, Grace A.en_US
dc.contributor.authorZimmerman, Paul M.en_US
dc.contributor.authorNagorny, Pavelen_US
dc.date.accessioned2014-11-04T16:35:56Z
dc.date.availableWITHHELD_12_MONTHSen_US
dc.date.available2014-11-04T16:35:56Z
dc.date.issued2014-10-13en_US
dc.identifier.citationSun, Zhankui; Winschel, Grace A.; Zimmerman, Paul M.; Nagorny, Pavel (2014). "Enantioselective Synthesis of Piperidines through the Formation of Chiral Mixed Phosphoric Acid Acetals: Experimental and Theoretical Studies ." Angewandte Chemie International Edition 53(42): 11194-11198.en_US
dc.identifier.issn1433-7851en_US
dc.identifier.issn1521-3773en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/109355
dc.description.abstractAn enantioselective intramolecular chiral phosphoric acid‐catalyzed cyclization of unsaturated acetals has been utilized for the synthesis of functionalized chiral piperidines. The chiral enol ether products of these cyclizations undergo subsequent in situ enantioenrichment through acetalization of the minor enantiomer. A new computational reaction exploration method was utilized to elucidate the mechanism and stereoselectivity of this transformation. Rather than confirming the originally postulated cyclization proceeding directly through a vinyl oxocarbenium ion, simulations identified an alternative two‐step mechanism involving the formation of a mixed chiral phosphate acetal, which undergoes a concerted, asynchronous S N 2′‐like displacement to yield the product with stereoselectivity in agreement with experimental observations. A rich seam : An enantioselective chiral phosphoric acid‐catalyzed cyclization of unsaturated acetals has been utilized for the synthesis of functionalized chiral piperidines. The chiral enol ether products of these cyclizations undergo subsequent in situ enantioenrichment. A new computational method was utilized to elucidate the mechanism and stereoselectivity of this transformation. Cbz=benzyloxycarbonyl; S =resolution.en_US
dc.publisherWILEY‐VCH Verlagen_US
dc.subject.otherHeterocyclesen_US
dc.subject.otherDensity Functional Calculationsen_US
dc.subject.otherAsymmetric Catalysisen_US
dc.subject.otherOrganocatalysisen_US
dc.subject.otherTransition Statesen_US
dc.titleEnantioselective Synthesis of Piperidines through the Formation of Chiral Mixed Phosphoric Acid Acetals: Experimental and Theoretical Studiesen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, MI 48109 (USA)en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109355/1/anie_201405128_sm_miscellaneous_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/109355/2/11194_ftp.pdf
dc.identifier.doi10.1002/anie.201405128en_US
dc.identifier.sourceAngewandte Chemie International Editionen_US
dc.identifier.citedreferenceE. C. Carlson, L. K. Rathbone, H. Yang, N. D. Collett, R. G. Carter, J. Org. Chem. 2008, 73, 5155;en_US
dc.identifier.citedreferenceA. Borovika, P.‐I. Tang, S. Klapman, P. Nagorny, Angew. Chem. Int. Ed. 2013, 52, 13424; Angew. Chem. 2013, 125, 13666.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceK. Takasu, S. Maiti, M. Ihara, Heterocycles 2003, 59, 51;en_US
dc.identifier.citedreferenceS. Fustero, D. Jimenez, J. Moscardo, S. Catalan, C. del Pozo, Org. Lett. 2007, 9, 5283;en_US
dc.identifier.citedreferenceS.‐L. You, Z. Feng, Q.‐L. Xu, L.‐X. Dai, Heterocycles 2010, 80, 765;en_US
dc.identifier.citedreferenceJ.‐D. Liu, Y.‐C. Chen, G.‐B. Zhang, Z.‐Q. Li, P. Chen, J.‐Y. Du, Y.‐Q. Tu, C.‐A. Fan, Adv. Synth. Catal. 2011, 353, 2721;en_US
dc.identifier.citedreferenceT. Cheng, S. Meng, Y. Huang, Org. Lett. 2013, 15, 1958;en_US
dc.identifier.citedreferenceR. Miyaji, K. Asano, S. Matsubara, Org. Lett. 2013, 15, 3658;en_US
dc.identifier.citedreferenceN. Veerasamy, E. C. Carlson, N. D. Collett, M. Saha, R. G. Carter, J. Org. Chem. 2013, 78, 4779;en_US
dc.identifier.citedreferenceY. Fukata, K. Asano, S. Matsubara, Chem. Lett. 2013, 42, 355.en_US
dc.identifier.citedreferenceReviews:en_US
dc.identifier.citedreferenceC. F. Nising, S. Brase, Chem. Soc. Rev. 2008, 37, 1218;en_US
dc.identifier.citedreferenceZ. Amara, J. Caron, D. Joseph, Nat. Prod. Rep. 2013, 30, 1211.en_US
dc.identifier.citedreferenceY. Ying, H. Kim, J. Hong, Org. Lett. 2011, 13, 796.en_US
dc.identifier.citedreferenceNote that the protonated 14 and 15 are not identified as stable structures. Optimization of the structures 14 and 15 led to 1 a and 5 a, respectively, thus indicating these are not stationary points on the PES. For the potential energy surface for the formation of the minor enantiomer refer to Schemes SI–SIII.en_US
dc.identifier.citedreferenceThe transition‐states 11 and 12 could be distinguished by the change in the charge distribution as well as by the PO‐C distances. Refer to the Supporting Information (p. 21) for a more detailed discussion.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceP. M. Zimmerman, J. Comput. Chem. 2013, 34, 1385;en_US
dc.identifier.citedreferenceP. M. Zimmerman, J. Chem. Phys. 2013, 138, 184102;en_US
dc.identifier.citedreferenceP. M. Zimmerman, J. Chem. Theory Comput. 2013, 9, 3043.en_US
dc.identifier.citedreferenceA. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378.en_US
dc.identifier.citedreferenceN. D. Shapiro, V. Rauniyar, G. L. Hamilton, J. Wu, F. D. Toste, Nature 2011, 470, 245.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceA. Wassermann, J. Chem. Soc. 1942, 618;en_US
dc.identifier.citedreferenceP. Yates, P. Eaton, J. Am. Chem. Soc. 1960, 82, 4436.en_US
dc.identifier.citedreferenceSelected reviews:en_US
dc.identifier.citedreferenceN. N. Joshi, Proc. Indian Natl. Sci. Acad. 2002, 68, 435;en_US
dc.identifier.citedreferenceA. Corma, H. Garcia, Chem. Rev. 2003, 103, 4307;en_US
dc.identifier.citedreferenceA. G. Doyle, E. N. Jacobsen, Chem. Rev. 2007, 107, 5713;en_US
dc.identifier.citedreferenceM. Rueping, A. Kuenkel, I. Atodiresei, Chem. Soc. Rev. 2011, 40, 4539;en_US
dc.identifier.citedreferenceG. Lelais, D. W. C. MacMillan, Aldrichimica Acta 2006, 39, 79;en_US
dc.identifier.citedreferenceD. W. C. MacMillan, Nature 2008, 455, 304;en_US
dc.identifier.citedreferenceA. Erkkilä, I. Majander, P. M. Pihko, Chem. Rev. 2007, 107, 5416.en_US
dc.identifier.citedreferenceM. Harmata, P. Rashatasakhon, Tetrahedron 2003, 59, 2371.en_US
dc.identifier.citedreferenceAuxiliary‐controlled ionic [2+4] cycloadditions:en_US
dc.identifier.citedreferenceT. Sammakia, M. A. Berliner, J. Org. Chem. 1994, 59, 6890;en_US
dc.identifier.citedreferenceT. Sammakia, M. A. Berliner, J. Org. Chem. 1995, 60, 6652;en_US
dc.identifier.citedreferenceA. Haudrechy, W. Picoul, Y. Langlois, Tetrahedron: Asymmetry 1997, 8, 139;en_US
dc.identifier.citedreferenceR. Kumareswaran, P. S. Vankar, M. V. R. Reddy, S. V. Pitre, R. Roy, Y. D. Vankar, Tetrahedron 1999, 55, 1099.en_US
dc.identifier.citedreferenceAuxiliary‐controlled ionic [3+4] cycloadditions:en_US
dc.identifier.citedreferenceM. Harmata, D. E. Jones, J. Org. Chem. 1997, 62, 1578;en_US
dc.identifier.citedreferenceM. Harmata, D. E. Jones, M. Kahraman, U. Sharma, C. L. Barnes, Tetrahedron Lett. 1999, 40, 1831;en_US
dc.identifier.citedreferenceC. B. W. Stark, U. Eggert, H. M. R. Hoffmann, Angew. Chem. Int. Ed. 1998, 37, 1266; Angew. Chem. 1998, 110, 1337.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceM. Terada, H. Tanaka, K. Sorimachi, J. Am. Chem. Soc. 2009, 131, 3430;en_US
dc.identifier.citedreferenceI. Čorić, S. Vellalath, B. List, J. Am. Chem. Soc. 2010, 132, 8536;en_US
dc.identifier.citedreferenceD. J. Cox, M. D. Smith, A. J. Fairbanks, Org. Lett. 2010, 12, 1452;en_US
dc.identifier.citedreferenceI. Čorić, S. Müller, B. List, J. Am. Chem. Soc. 2010, 132, 17370;en_US
dc.identifier.citedreferenceZ.‐Y. Han, R. Guo, P.‐S. Wang, D.‐F. Chen, H. Xiao, L.‐Z. Gong, Tetrahedron Lett. 2011, 52, 5963;en_US
dc.identifier.citedreferenceI. Čorić, B. List, Nature 2012, 483, 315;en_US
dc.identifier.citedreferenceZ. Sun, G. A. Winschel, A. Borovika, P. Nagorny, J. Am. Chem. Soc. 2012, 134, 8074;en_US
dc.identifier.citedreferenceM. Terada, Y. Toda, Angew. Chem. Int. Ed. 2012, 51, 2093; Angew. Chem. 2012, 124, 2135;en_US
dc.identifier.citedreferenceH. Wu, Y.‐P. He, L.‐Z. Gong, Org. Lett. 2013, 15, 460;en_US
dc.identifier.citedreferenceJ. H. Kim, I. Coric, S. Vellalath, B. List, Angew. Chem. Int. Ed. 2013, 52, 4474; Angew. Chem. 2013, 125, 4474;en_US
dc.identifier.citedreferenceE. Mensah, N. Camasso, W. Kaplan, P. Nagorny, Angew. Chem. Int. Ed. 2013, 52, 12932; Angew. Chem. 2013, 125, 13170;en_US
dc.identifier.citedreferenceP. Nagorny, Z. Sun, G. Winschel, Synlett 2013, 661;en_US
dc.identifier.citedreferenceT. Kimura, M. Sekine, D. Takahashi, K. Toshima, Angew. Chem. Int. Ed. 2013, 52, 12131; Angew. Chem. 2013, 125, 12353;en_US
dc.identifier.citedreferenceZ. Chen, J. Sun, Angew. Chem. Int. Ed. 2013, 52, 13593; Angew. Chem. 2013, 125, 13838;en_US
dc.identifier.citedreferenceC.‐C. Hsiao, H.‐H. Liao, E. Sugiono, I. Atodiresei, M. Rueping, Chem. Eur. J. 2013, 19, 9775;en_US
dc.identifier.citedreferenceM. Terada, T. Yamanaka, Y. Toda, Chem. Eur. J. 2013, 19, 13658;en_US
dc.identifier.citedreferenceR. Quach, D. P. Furket, M. A. Brimble, Tetrahedron Lett. 2013, 54, 5865;en_US
dc.identifier.citedreferenceY. Cui, L. A. Villafane, D. J. Clausen, P. E. Floreancig, Tetrahedron 2013, 69, 7618;en_US
dc.identifier.citedreferenceC. Lu, X. Su, P. E. Floreancig, J. Org. Chem. 2013, 78, 9366;en_US
dc.identifier.citedreferenceV. M. Lombardo, C. D. Thomas, K. A. Scheidt, Angew. Chem. Int. Ed. 2013, 52, 12910; Angew. Chem. 2013, 125, 13148.en_US
dc.identifier.citedreference en_US
dc.identifier.citedreferenceA. Borovika, P. Nagorny, Tetrahedron 2013, 69, 5719;en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.